Author: Henderson, S.
Paper Title Page
MOOBA01 Thorium Energy Futures 29
 
  • S. Peggs, W. Horak, T. Roser
    BNL, Upton, Long Island, New York, USA
  • V.B. Ashley, R.F. Ashworth
    Jacobs Engineering, Pasadena, USA
  • R.J. Barlow, R. Cywinski, R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
  • J.-L. Biarrotte
    IPN, Orsay, France
  • S. Henderson
    Fermilab, Batavia, USA
  • A. Hutton
    JLAB, Newport News, Virginia, USA
  • J. Kelly
    Thor Energy, Oslo, Norway
  • M. Lindroos
    ESS, Lund, Sweden
  • P.M. McIntyre
    Texas A&M University, College Station, Texas, USA
  • A. Norlin
    IThEO, Sweden
  • H.L. Owen
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G.T. Parks
    University of Cambridge, Cambridge, United Kingdom
 
  The potential for thorium as an alternative or supplement to uranium in fission power generation has long been recognised, and several reactors, of various types, have already operated using thorium-based fuels. Accelerator Driven Subcritical (ADS) systems have benefits and drawbacks when compared to conventional critical thorium reactors, for both solid and molten salt fuels. None of the four options – liquid or solid, with or without an accelerator – can yet be rated as better or worse than the other three, given today's knowledge. We outline the research that will be necessary to lead to an informed choice.  
slides icon Slides MOOBA01 [3.887 MB]  
 
WEIC06 Accelerator R&D: Research for Science - Science for Society 2161
 
  • N.R. Holtkamp
    SLAC, Menlo Park, California, USA
  • S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • L. Boeh, J.E. Clayton, G. Zdasiuk
    VMS GTC, Palo Alto, California, USA
  • S.A. Gourlay, M.S. Zisman
    LBNL, Berkeley, California, USA
  • R.W. Hamm
    R&M Technical Enterprises, Pleasanton, California, USA
  • S. Henderson
    Fermilab, Batavia, USA
  • G.H. Hoffstaetter
    CLASSE, Ithaca, New York, USA
  • L. Merminga
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • S. Ozaki
    BNL, Upton, Long Island, New York, USA
  • F.C. Pilat
    JLAB, Newport News, Virginia, USA
  • M. White
    ANL, Argonne, USA
 
  In September 2011 the US Senate Appropriations Committee requested a ten-year strategic plan from the Department of Energy (DOE) that would describe how accelerator R&D today could advance applications directly relevant to society. Based on the 2009 workshop "Accelerators for America’s Future" an assessment was made on how accelerator technology developed by the nation’s laboratories and universities could directly translate into a competitive strength for industrial partners and a variety of government agencies in the research, defense and national security sectors. The Office of High Energy Physics, traditionally the steward for advanced accelerator R&D within DOE, commissioned a task force under its auspices to generate and compile ideas on how best to implement strategies that would help fulfill the needs of industry and other agencies, while maintaining focus on its core mission of fundamental science investigation.  
slides icon Slides WEIC06 [3.678 MB]  
 
THPPP090 Project X Functional Requirements Specification 3945
 
  • S.D. Holmes, S. Henderson, R.D. Kephart, J.S. Kerby, I. Kourbanis, V.A. Lebedev, C.S. Mishra, S. Nagaitsev, N. Solyak, R.S. Tschirhart
    Fermilab, Batavia, USA
 
  Funding: Work supported by the Fermi Research Alliance, under contract to the U.S. Department of Energy.
Project X is a multi-megawatt proton facility being developed to support a world-leading program in Intensity Frontier physics at Fermilab. The facility is designed to support programs in elementary particle and nuclear physics, with possible applications to nuclear energy research. A Functional Requirements Specification has been developed in order to establish performance criteria for the Project X complex in support of these multiple missions, and to assure that the facility is designed with sufficient upgrade capability to provide U.S. leadership for many decades to come. This paper will describe the Functional Requirements for the Project X facility, their recent evolution, and the rationale for these requirements.