Author: Hammond, K.C.
Paper Title Page
MOPPR074 Using TE Wave Resonances for the Measurement of Electron Cloud Density 960
 
  • J.P. Sikora, M.G. Billing, D. L. Rubin, R.M. Schwartz
    CLASSE, Ithaca, New York, USA
  • D. Alesini
    INFN/LNF, Frascati (Roma), Italy
  • B.T. Carlson
    CMU, Pittsburgh, Pennsylvania, USA
  • S. De Santis
    LBNL, Berkeley, California, USA
  • K.C. Hammond
    Harvard University, Cambridge, Massachusetts, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, PHY-1002467, and the US Department of Energy under Contracts DE-FC02-08ER41538, DE-AC02-05CH11231.
In the past few years, electron cloud density has been measured by means of its effect on TE waves propagated through the accelerator vacuum chamber. This technique has been the object of careful studies and has been used in several laboratories around the world (CERN, SLAC, FNAL, Cornell, INFN-LNF). Recent measurements at CesrTA and DAΦNE show that in a majority of practical cases, the theoretical model that relates the cloud density to the phase shift induced on a TE wave propagating in beam pipe may not be the correct one. Instead, the measurement results have to be analyzed considering the effect of the electron cloud on a standing wave excited between the input and output couplers - typically Beam Position Monitors (BPMs). This standing wave pattern is not confined to the portion of beampipe between the BPMs and must be understood in order to correctly interpret the measurement. In this paper we present evidence that the transmission function near cutoff between two BPMs is the result of coupling to standing waves trapped in the vacuum chamber. This evidence includes measurements at DAΦNE, Cesr-TA, a test waveguide, computer EM simulations, and analytical calculations.