Author: Gourlay, S.A.
Paper Title Page
WEIC06 Accelerator R&D: Research for Science - Science for Society 2161
 
  • N.R. Holtkamp
    SLAC, Menlo Park, California, USA
  • S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • L. Boeh, J.E. Clayton, G. Zdasiuk
    VMS GTC, Palo Alto, California, USA
  • S.A. Gourlay, M.S. Zisman
    LBNL, Berkeley, California, USA
  • R.W. Hamm
    R&M Technical Enterprises, Pleasanton, California, USA
  • S. Henderson
    Fermilab, Batavia, USA
  • G.H. Hoffstaetter
    CLASSE, Ithaca, New York, USA
  • L. Merminga
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • S. Ozaki
    BNL, Upton, Long Island, New York, USA
  • F.C. Pilat
    JLAB, Newport News, Virginia, USA
  • M. White
    ANL, Argonne, USA
 
  In September 2011 the US Senate Appropriations Committee requested a ten-year strategic plan from the Department of Energy (DOE) that would describe how accelerator R&D today could advance applications directly relevant to society. Based on the 2009 workshop "Accelerators for America’s Future" an assessment was made on how accelerator technology developed by the nation’s laboratories and universities could directly translate into a competitive strength for industrial partners and a variety of government agencies in the research, defense and national security sectors. The Office of High Energy Physics, traditionally the steward for advanced accelerator R&D within DOE, commissioned a task force under its auspices to generate and compile ideas on how best to implement strategies that would help fulfill the needs of industry and other agencies, while maintaining focus on its core mission of fundamental science investigation.  
slides icon Slides WEIC06 [3.678 MB]  
 
THPPP093 Progress on MICE RFCC Module 3954
 
  • D. Li, D.L. Bowring, A.J. DeMello, S.A. Gourlay, M.A. Green, N. Li, T.O. Niinikoski, H. Pan, S. Prestemon, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California, USA
  • A.D. Bross, R.H. Carcagno, V. Kashikhin, C. Sylvester
    Fermilab, Batavia, USA
  • Y. Cao, S. Sun, L. Wang, L. Yin
    SINAP, Shanghai, People's Republic of China
  • A.B. Chen, B. Guo, L. Li, F.Y. Xu
    ICST, Harbin, People's Republic of China
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois, USA
  • T.H. Luo, D.J. Summers
    UMiss, University, Mississippi, USA
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231, US Muon Accelerator Program and NSF MRI award: 0959000.
Recent progress on the design and fabrication of the RFCC (RF and Coupling Coil) module for the international MICE (Muon Ionization Cooling Experiment) will be reported. The MICE ionization cooling channel has two RFCC modules; each having four 201-MHz normal conducting RF cavities surrounded by one superconducting coupling coil (solenoid) magnet. The magnet is designed to be cooled by 3 cryocoolers. Fabrication of the RF cavities is complete; preparation for the cavity electro-polishing, low power RF measurements and tuning are in progress at LBNL. Fabrication of the cold mass of the first coupling coil magnet has been completed in China and the cold mass arrived at LBNL in late 2011. Preparations for testing the cold mass are currently under way at Fermilab. Plans for the RFCC module assembly and integration are being developed and will be described.