Author: Gerigk, F.
Paper Title Page
THPPP014 Design Parameters of a High-Power Proton Synchrotron for Neutrino Beams at Cern 3755
 
  • Y. Papaphilippou, M. Benedikt, I. Efthymiopoulos, F. Gerigk, R. Steerenberg
    CERN, Geneva, Switzerland
 
  Design studies have been initiated at CERN for exploring the prospects of future high-power proton beams for producing neutrinos within the LAGUNA-LBNO project. These studies include a possible increase of the SPS beam power from 500kW to 700kW for a new conventional neutrino beam line based on the CNGS technology, and at a second stage a 2~MW High-Power Proton Synchrotron (HP-PS) using the Low Power Superconducting Proton Linac (LP-SPL) as injector. A low energy 5GeV-4MW neutrino super-beam alternative based on a high-power version of SPL is also considered. This paper concentrates on the HP-PS by exploring the parameter space and constraints regarding beam characteristics, machine hardware and layout, for reaching the 2~MW average beam power.  
 
THPPP049 Tuning Procedure for the LINAC4 PI Mode Structure (PIMS) 3850
 
  • P. Ugena Tirado, F. Gerigk, R. Wegner
    CERN, Geneva, Switzerland
 
  PI-Mode-Structure (PIMS) cavities will be used in the high energy section of LINAC4 (102-160 MeV). Each cavity is made of 7 coupled cells, operated in the π-mode at a resonant frequency of 352.2 MHz. The cell length remains constant for each of the 12 cavities but changes from cavity to cavity to synchronise with the increased beam energy. This paper reports on the tuning process required to get a constant voltage in each cell at the resonant frequency and consisting in re-machining to the required level the tuning rings located on each cell-wall. An algorithm based on single cell detuning, equivalent circuit simulations and precise 3D simulations for the 3 different cell types of each cavity has been developed and successfully applied to the tuning of the first PIMS cavity. In order to reduce the simulation effort for the remaining 11 cavities, an interpolation algorithm based on 3 cavities has been developed and validated. In a second tuning step, after the electron beam welding of all cells, the final adjustment of single-cell frequencies and field flatness is achieved by cutting the length of one plunger tuner per cell.