Author: Garcia, H.
Paper Title Page
TUPPR022 Traditional Final Focus System for CLIC 1858
 
  • H. Garcia, A. Latina, R. Tomás
    CERN, Geneva, Switzerland
  • H. Garcia
    UPC, Barcelona, Spain
 
  Next generation linear colliders needs a very strong focalisation to reach nanometer beam size at the Interaction Point. This task and the chromatic correction generated by the strong lenses is done by the Final Focus System. A traditional Final Focus System based on dedicated chromaticity correction sections is presented as an alternative for CLIC Final Focus. The scheme of the lattice is shown and some tolerances in the Final Doublet are calculated. A systematic tuning using Simplex algorithm and sextupole knobs is performed. The complete comparison to the Local Chromaticity correction scheme is presented.  
 
TUPPR023 Final-Focus Optics for the LHeC Electron Beam Line 1861
 
  • J.L. Abelleira
    EPFL, Lausanne, Switzerland
  • J.L. Abelleira, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • H. Garcia
    UPC, Barcelona, Spain
 
  Funding: Work supported by the European Commission under the FP7 Research Infrastructures project Eu- CARD, grant agreement no. 227579.
One of the options considered for the ECFA-CERN-NuPECC design study for a Large Hadron electron Collider (LHeC)* based on the LHC is adding a recirculating energy-recovery linac tangential to the LHC. First designs of the electron Final Focus System have shown the need to correct the chromatic aberrations. Two designs using different approaches for the chromaticity correction are compared, namely, the local chromaticity correction** and the traditional approach using dedicated sections.
*LHeC Study Group, “A Large Hadron Electron Collider at CERN,” LHeC-Note 2011-001 (2011).
**J. Abelleria et al., "Design Status of LHeC Linac‐Ring Interaction Region," IPAC2011, p. 2796 (2011).