Author: Ganni, V.
Paper Title Page
WEPPD006 Design of the FRIB Cryomodule 2507
 
  • M.J. Johnson, M. Barrios, J. Binkowski, S. Bricker, F. Casagrande, A.D. Fox, B.R. Lang, M. Leitner, S.J. Miller, T. Nellis, J.P. Ozelis, X. Rao, J. Weisend, Y. Xu
    FRIB, East Lansing, Michigan, USA
  • D. Arenius, V. Ganni, W.J. Schneider, M. Wiseman
    JLAB, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
An advanced, modular bottom-supported cryomodule design is described which is highly optimized for mass-production and efficient precision-assembly. The FRIB driver linac uses 4 types of superconducting resonators and 2 solenoid lengths which in turn require 7 individual cryomodule configurations. To meet alignment tolerances a precision-machined bolted cryomodule rail system is described. A novel, kinematic mounting system of the cold mass is introduced which allows for thermal contractions while preserving alignment. A first prototype will incorporate a wire position monitor for alignment verification. The cold alignment structure is supported by composite posts which also function as thermal isolators. The cryogenic system provides separate 2 K and 4.5 K liquid helium lines to cavities and solenoids. Details of the JT valves, heat exchanger, cool-down circuit and junction to cryogenic line will be provided. Transient cool-down was simulated for stresses and buckling failure. A 1100-O Aluminum shield is used as a thermal radiation shield. The paper also describes cryomodule interfaces with the linac tunnel, the RF input cables, and the cryogenic distribution system.
Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.
 
 
WEPPD007 Integrated Thermal Analysis of the FRIB Cryomodule Design 2510
 
  • Y. Xu, M. Barrios, F. Casagrande, M.J. Johnson, M. Leitner
    FRIB, East Lansing, Michigan, USA
  • D. Arenius, V. Ganni, W.J. Schneider, M. Wiseman
    JLAB, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
Thermal analysis of the FRIB cryomodule design is performed to determine the heat load to the cryogenic plant, to minimize the cryogenic plant load, to simulate thermal shield cool down as well as to determine the pressure relief sizes for failure conditions. Static and dynamic heat loads of the cryomodules are calculated and the optimal shield temperature is determined to minimize the cryogenic plant load. Integrated structural and thermal simulations of the 1100-O aluminium thermal shield are performed to determine the desired cool down rate to control the temperature profile on the thermal shield and to minimize thermal expansion displacements during the cool down. Pressure relief sizing calculations for the SRF helium containers, solenoids, helium distribution piping, and vacuum vessels are also described.
Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.