Author: Furuta, F.
Paper Title Page
WEPPC069 Construction, Evaluation, and Application of a Temperature Map for Multi-cell SRF Cavities 2369
 
  • G.M. Ge, F. Furuta, D.L. Hartill, K.M.V. Ho, G.H. Hoffstaetter, E.N. Smith
    CLASSE, Ithaca, New York, USA
 
  Temperature mapping (T-mapping) system is able to locate hot-spot of SRF cavity, thus it is a very powerful tool for cavity’s Q-value research. Recently Cornell University is developing a T-mapping system for multi-cell SRF cavities. The system includes more than two thousands Allen-Bradley resistors. Electronic of the system uses multiplexing of sensors which is able to dramatically reduce wire numbers, and allow the whole system is feasible for multi-cell cavity application. A new cavity testing insert which is for T-mapping system has been constructed.  
 
WEPPC073 Progress on Superconducting RF Work for the Cornell ERL 2381
 
  • M. Liepe, F. Furuta, G.M. Ge, Y. He, G.H. Hoffstaetter, T.I. O'Connell, S. Posen, J. Sears, M. Tigner, N.R.A. Valles, V. Veshcherevich
    CLASSE, Ithaca, New York, USA
 
  Cornell University is developing the superconducting RF technology required for the construction of a 100 mA hard X-ray light source driven by an Energy-Recovery Linac. Prototypes of all beam line components of the 5 GeV cw SRF main linac cryomodule have been fabricated and tested in detail. This work includes an optimized 7-cell SRF cavity, a broadband HOM beamline absorber, a cold frequency tuner, and a 5 kW CW RF input coupler. A one-cavity test cryomodule has been assembled for a first full cryomodule test of the main linac cavity, and is currently under testing. In this paper we give an overview of these extensive R&D activities at Cornell.  
 
WEPPC075 Testing of the Main-Linac Prototype Cavity in a Horizontal Test Cryomodule for the Cornell ERL 2387
 
  • N.R.A. Valles, F. Furuta, G.M. Ge, Y. He, K.M.V. Ho, G.H. Hoffstaetter, M. Liepe, T.I. O'Connell, S. Posen, P. Quigley, J. Sears, M. Tigner, V. Veshcherevich
    CLASSE, Ithaca, New York, USA
 
  Cornell has recently finished producing and testing the first prototype 7-cell main linac cavity for the Cornell Energy Recovery Linac (ERL). The cavity construction met all necessary fabrication constraints. After a bulk BCP, 650C outgassing, final BCP, and 120C bake the cavity was vertically tested. The cavity met quality factor and gradient specifications (2·1010 at 16.2 MV/m) in the vertical test. Progressing with the ERL linac development, the cavity was installed in a horizontal test cryomodule and the quality factor versus accelerating gradient was again measured. This baseline measurement is the first test in a sequence of tests of the main linac cavity in the test cryomodule. Subsequent tests will be with increased complexity of the beam line, e.g. with HOM beamline loads installed, to study potential sources of reducing the cavity’s quality factor.  
 
TUPPR045 Multi-cell VEP Results: High Voltage, High Q, and Localized Temperature Analysis 1918
 
  • F. Furuta, B. Elmore
    Cornell University, Ithaca, New York, USA
  • A.C. Crawford
    Fermilab, Batavia, USA
  • G.M. Ge, G.H. Hoffstaetter, M. Liepe
    CLASSE, Ithaca, New York, USA
 
  We are developing Vertical Electro Polishing (VEP) system for niobium superconducting RF cavity at Cornell University. VEP has been successfully applied on different cell shapes (TESLA and Re-entrant), and single and multi-cell cavities. VEP achieved high gradient of 39MV/m with TESLA shape single cell and of 36MV/m with TESLA shape 9-cell, respectively. Preliminary results of R&D on VEPed cavities show removal dependence on cavity performance. Temperature oscillation asymmetry was also found during the VEP process. We will report these recent results and further R&D plan of Cornell VEP.