Author: Fitterer, M.
Paper Title Page
TUPPC036 Integration with the LHC of Electron Interaction Region Optics for a Ring-ring LHeC 1239
 
  • L.N.S. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R. Appleby
    UMAN, Manchester, United Kingdom
  • N.R. Bernard
    ETH, Zurich, Switzerland
  • H. Burkhardt, B.J. Holzer
    CERN, Geneva, Switzerland
  • M. Fitterer
    KIT, Karlsruhe, Germany
  • M. Klein
    The University of Liverpool, Liverpool, United Kingdom
  • P. Kostka
    DESY Zeuthen, Zeuthen, Germany
 
  The Large Hadron Electron Collider (LHeC) project is a proposal to study e-p and e-A interactions at the LHC. One design uses an electron synchrotron to collide a 60GeV e± beam with the 7TeV proton beam. Designing a new accelerator around the existing LHC machine poses unique challenges, particularly in the interaction region (IR). The electron beam must be quickly separated from the proton beam after the interaction point (IP) to avoid beam-beam effects, while not significantly reducing luminosity or producing large amounts of synchrotron radiation. The proton beam must pass through the electron optics, while the electron beam must avoid the proton optics. The long straight section requires bending in both planes to counteract the IP crossing angle and to displace the beam vertically from the electron machine to the proton IP. An achromatic bending scheme is used in the vertical plane to eliminate dispersion at the IP and provide an optics which is well matched to the LHeC ring lattice. The interaction region and long straight section design is presented and detailed, and the design process and principles discussed.  
 
TUPPC037 Update on LHeC Ring-Ring Optics 1242
 
  • M. Fitterer
    KIT, Karlsruhe, Germany
  • O.S. Brüning, H. Burkhardt, B.J. Holzer, J.M. Jowett
    CERN, Geneva, Switzerland
  • M. Klein
    The University of Liverpool, Liverpool, United Kingdom
 
  An update of the LHeC Ring-Ring optics is presented which accounts for chromatic corrections and more flexibility in the tune adjustment.