Author: Esarey, E.
Paper Title Page
WEEPPB003 Modeling of 10 GeV-1 TeV Laser-Plasma Accelerators Using Lorentz Boosted Simulations 2172
 
  • J.-L. Vay, E. Esarey, C.G.R. Geddes, W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
  • E. Cormier-Michel
    Tech-X, Boulder, Colorado, USA
  • D.P. Grote
    LLNL, Livermore, California, USA
 
  Funding: Supported by US-DOE Contracts DE-AC02-05CH11231 and DE-AC52-07NA27344, US-LHC program LARP, and US-DOE SciDAC program ComPASS.
Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [J.-L. Vay, Phys. Rev. Lett. 98 130405 (2007)] allows direct and efficient full-scale modeling of deeply depleted and beam loaded laser-plasma stages of 10 GeV-1 TeV (parameters not computationally accessible otherwise). This verifies the scaling of plasma accelerators to very high energies and accurately models the laser evolution and the accelerated electron beam transverse dynamics and energy spread. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively. Agreement at the percentage level is demonstrated between simulations using different frames of reference for a 0.1 GeV class stage. Obtaining these speedups and levels of accuracy was permitted by solutions for handling data input (in particular particle and laser beams injection) and output in a relativistically boosted frame of reference, as well as mitigation of a high-frequency instability that otherwise limits effectiveness.
Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.