Author: Eguiraun, M.
Paper Title Page
TUPPC030 Status of the Ion Sources at ESS-Bilbao 1227
 
  • J. Feuchtwanger, I. Arredondo, F.J. Bermejo, I. Bustinduy, J. Corres, M. Eguiraun, P.J. González, J.L. Muñoz
    ESS Bilbao, Bilbao, Spain
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • R. Miracoli
    ESS-Bilbao, Zamudio, Spain
 
  Currently there are two types of ion sources under development and testing at ESS-Bilbao, the first one is a Penning type source based on the ISIS/RAL source, modified to use permanent magnets to generate the Penning field. The second source is an off-resonance ECR source that is being developed in-house. The Penning source is in the late stages of commissioning, and a beam has been extracted from it. Currently the main work on that source is in the optimization of the operating parameters. The ECR source on the other hand is in the early stages of the commissioning, all parts have been fabricated, and Vacuum tests are underway. Testing of the RF and control systems will follow, and finally the whole system will be tested. The control system for both ion sources was developed under LabView, and runs on a real time system. While for testing the timing sequences run locally, the system is being developed so that it can run using a central timing system.  
 
WEPPD070 Automatic Tuner Unit Operation for the Microwave System of the ESS-Bilbao H+ Ion Source 2684
 
  • L. Muguira, I. Arredondo, D. Belver, M. Eguiraun, F.J. Fernandez Huerta, J. Feuchtwanger, N. Garmendia, O. González, P.J. González
    ESS Bilbao, LEIOA, Spain
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • J. Verdu
    EPFL, Lausanne, Switzerland
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
The operation of the waveguide automatic tuner unit (ATU) for optimizing the impedance matching and the RF power coupling in the ESS-Bilbao H+ Ion Source (ISHP) is presented. Since the plasma chamber can be considered as a time varying load impedance for the pulsed RF 2.7 GHz high power generator, several approaches have been studied for accurately measuring the load impedance. In the later case, a set of power detectors connected to electric field probes, IQ demodulators and gain/phase detectors connected to dual directional couplers have been integrated. An experimental comparison of these approaches is presented, showing their accuracy, limitations and error-correction methods. Finally, the control system developed for the automatic operation of the triple capacitive post tuner is described, as well as illustrative results.
 
 
THPPR008 Wireless Network Integration Into EPICS Systems 3978
 
  • I. Badillo, M. Eguiraun, D. Piso
    ESS-Bilbao, Zamudio, Spain
  • J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: ESS Bilbao Consortium
Wired connections are very often irreplaceable in large scientific facilities due to performance and reliability issues. However, those communication links suffer from several disadvantages, such as lack of flexibility during deployment or reconfiguration and deterioration of wires and physical connectors. The goal of the present work is to introduce wireless EPICS sub-networks in a standard general wired EPICS system. This involves the study and selection of a proper wireless technology, architecture, communication strategy and security policy. To ensure the validity of the proposed approach, a thorough study of the results related parameters, such as throughput, security, repeatability and stability of the overall system is needed. Once those are considered, the next step is to decide where and when the replacement of physical connections with Wireless communication systems is suitable. The aim is to eliminate as many wires as possible without decreasing the reliability, security and performance of the current EPICS control network.