Author: Dugan, G.
Paper Title Page
TUPPR063 Investigation into Electron Cloud Effects in the ILC Damping Ring Design 1963
 
  • J.A. Crittenden, J.V. Conway, G. Dugan, M.A. Palmer, D. L. Rubin
    CLASSE, Ithaca, New York, USA
  • L.E. Boon, K.C. Harkay
    ANL, Argonne, USA
  • M.A. Furman
    LBNL, Berkeley, California, USA
  • S. Guiducci
    INFN/LNF, Frascati (Roma), Italy
  • M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy DE-SC0006506
We report modeling results for electron cloud buildup in the ILC damping ring lattice design. Updated optics, wiggler magnet, and vacuum chamber designs have recently been developed for the 5-GeV, 3.2-km racetrack layout. An analysis of the synchrotron radiation profile around the ring has been performed, including the effect of photon scattering on the interior of the vacuum chamber. Operational implications of the resulting electron cloud buildup will be discussed.
 
 
WEYA02 Studies at CesrTA of Electron-Cloud-Induced Beam Dynamics for Future Damping Rings 2081
 
  • G. Dugan, M.G. Billing, K.R. Butler, J.A. Crittenden, M.J. Forster, D.L. Kreinick, R.E. Meller, M.A. Palmer, G. Ramirez, M.C. Rendina, N.T. Rider, K.G. Sonnad, H.A. Williams
    CLASSE, Ithaca, New York, USA
  • R.F. Campbell, R. Holtzapple, M. Randazzo
    CalPoly, San Luis Obispo, California, USA
  • J.Y. Chu
    CMU, Pittsburgh, Pennsylvania, USA
  • J.W. Flanagan, K. Ohmi
    KEK, Ibaraki, Japan
  • M.A. Furman, M. Venturini
    LBNL, Berkeley, California, USA
  • M.T.F. Pivi
    SLAC, Menlo Park, California, USA
 
  Funding: US National Science Foundation PHY-0734867, PHY-1002467, and PHY-1068662; US Dept. of Energy DE-FC02-08ER41538; and the Japan/US Cooperation Program.
Electron clouds can adversely affect the performance of accelerators, and are of particular concern for the design of future low emittance damping rings. Studies of the impact of electron clouds on the dynamics of bunch trains in CESR have been a major focus of the CESR Test Accelerator program. In this paper, we report measurements of coherent tune shifts, emittance growth, and coherent instabilities carried out using a variety of bunch currents, train configurations, beam energies, and transverse emittances, similar to the design values for the ILC damping rings. We also compare the measurements with simulations which model the effects of electron clouds on beam dynamics, to extract simulation model parameters and to quantify the validity of the simulation codes.
 
slides icon Slides WEYA02 [2.033 MB]  
 
WEPPR087 Dependence of Beam Instabilities Caused by Electron Clouds at CesrTA Due to Variations in Chromaticity, Bunch Current and Train Length 3135
 
  • M.G. Billing, G. Dugan, M.J. Forster, D.L. Kreinick, R.E. Meller, M.A. Palmer, G. Ramirez, M.C. Rendina, N.T. Rider, J.P. Sikora, K.G. Sonnad, H.A. Williams
    CLASSE, Ithaca, New York, USA
  • J.Y. Chu
    CMU, Pittsburgh, Pennsylvania, USA
  • J.W. Flanagan
    KEK, Ibaraki, Japan
  • R. Holtzapple, M. Randazzo
    CalPoly, San Luis Obispo, California, USA
 
  Funding: Work supported by DOE Award DE-FC02-08ER41538, NSF Award PHY-0734867 and the Lepton Collider R&D Coop Agreement: NSF Award PHY-1002467.
Electron cloud-induced beam dynamics is being studied at CESRTA under various conditions. These measurements detect the the coherent self-excited spectrum for each bunch within a train and bunch-by-bunch beam size. In the position spectrum coherent betatron dipole and head-tail motion is detectable for each individual bunch within the train with a sensitivity for the motion of 1.1 (2) microns-rms in the vertical (horizontal) direction for a 1 mA bunch current. These techniques are utilized to study the electron cloud-related interactions, which cause the growth of coherent motion and beam size along the train. We report on the observations and results from studies of the instability growth vs. changes in chromaticity, the current per bunch and the length of the train.
 
 
WEPPR088 Modeling and Simulation of Retarding Field Analyzers at CESRTA 3138
 
  • J.R. Calvey, J.A. Crittenden, G. Dugan, W. Hartung, J. Makita, M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • M.A. Furman, M. Venturini
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the US National Science Foundation (PHY-0734867 and PHY-1002467), and Department of Energy (DE-FC02-08ER41538).
Over the course of the CESRTA program at Cornell, Retarding Field Analyzers (RFAs) have been installed in drift, dipole, quadrupole, and wiggler field regions of the CESR storage ring. RFAs are used to measure the local electron cloud flux on the vacuum chamber wall. Through the use of a retarding grid and segmented collectors, they also provide information on the energy and transverse distribution of the cloud. Understanding these measurements on a quantitative level requires the use of cloud buildup simulation codes, adapted to include a detailed model of the structure of the RFA and its interaction with the cloud. The nature of this interaction depends strongly on the strength of the local magnetic field. We have developed models for RFAs in drift and dipole regions. The drift model has been cross-checked with bench measurements, and we have compared the RFA-adapted cloud buildup simulations with data. These comparisons have then been used to obtain best fit values for the photo-emission and secondary electron emission characteristics of some of the vacuum chamber materials and cloud mitigating coatings employed at CESRTA.