Author: Ducimetière, L.
Paper Title Page
TUPPR090 Analysis of Ferrite Heating of the LHC Injection Kickers and Proposals for Future Reduction of Temperature 2038
 
  • M.J. Barnes, L. Ducimetière, N. Garrel, B. Goddard, V. Mertens, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The two LHC injection kicker magnet (MKI) systems produce a kick of 1.3 T-m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen, consisting of a ceramic tube with conductors on the inner wall, is placed in the aperture of the magnets. The conductors provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against wake fields. The conductors initially used gave adequately low beam coupling impedance however inter-conductor discharges occurred during pulsing of the magnet; hence an alternative design was implemented to meet the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time and good high voltage behaviour. During 2011 the LHC has been operated with high intensity beam, coasting for many hours at a time, resulting in heating of both the ferrite yoke and beam impedance reduction ferrites, of the MKIs. This paper presents an analysis of thermal measurement data and an extrapolation of the heating for future operation; in addition means are discussed for reducing ferrite heating and improving cooling.