Author: Dieckmann, A.
Paper Title Page
MOPPR009 Dynamic Closed Orbit Correction During the Fast Energy Ramp of ELSA 789
 
  • J.-P. Thiry, A. Balling, A. Dieckmann, F. Frommberger, W. Hillert
    ELSA, Bonn, Germany
 
  ELSA is a fast ramping stretcher ring supplying polarized electrons to hadron physics experiments. To preserve the degreee of polarization, it is necessary to continuously correct the vertical orbit when accelerating the beam from 1.2 GeV to 2.4 GeV. Acceleration is performed within 300 ms, thus with a ramping speed of 4 GeV/s. During the acceleration, beam positions are measured at a rate of 1 kHz using 32 beam position monitors, which are mounted close to the quadrupole magnets. The demanding task is to achieve a vertical rms deviation not exceeding 50 μm all along the fast energy ramp. Therefore, dynamic orbit corrections are applied by means of offline feed-forward techniques, driving 32 vertical steerer magnets which can change currents in less than 10 ms. In our contribution, we show the used concepts and the implementation of the precise closed orbit correction system at ELSA.  
 
TUPPC067 How to Achieve Longitudinally Polarized Electrons using Integer Spin Tune Resonances 1326
 
  • O. Boldt, A. Dieckmann, F. Frommberger, W. Hillert, J.F. Schmidt
    ELSA, Bonn, Germany
 
  Funding: Bundesministerium für Bildung und Forschung
Commonly, strong solenoids are used in circular accelerators to achieve longitudinal polarization. In practice, however, these solenoids cause a phase space coupling, which has to be compensated for by sophisticated decoupling schemes. We suggest to adiabatically ramp into an integer spin tune resonance, while preserving the degree of polarization. When appropriately adjusting the driving horizontal field contributions at the final energy, the resulting polarization is longitudinal at predefined positions in the accelerator. Here, depending on the energy spread, the degree of polarization is conserved for several seconds. The contribution shows the numerical analysis of this scenario being confirmed by first demonstration tests at the ELSA stretcher ring.
 
 
THPPD050 Fast Ramping Arbitrary Waveform Power Supplies for Correction Coils in a Circular Electron Accelerator 3623
 
  • A. Dieckmann, A. Balling, O. Boldt, F. Frommberger, W. Hillert, W. Lindenberg
    ELSA, Bonn, Germany
 
  New fast ramping power supplies working in pulsed bridge technology upgrade the existing Corrector System at ELSA. Current changes of ±0.8 A/msec are achieved. The newly developed CAN-Bus Interface allows linear interpolation of up to 250 support points with minimal time steps of 1msec. The first stage uses 24 power supplies to improve the position of the beam orbit in the horizontal plane using dipole correction coils. It will be extended to include the vertical plane with new corrector coils in the near future. This poster describes the operating principles of the power supply and the interface.