Author: Comeaux, J.
Paper Title Page
MOPPD033 Strong-focusing Cyclotron - High-current Applications 436
 
  • P.M. McIntyre, S. Assadi, K.E. Badgley, C. Collins, J. Comeaux, R. Garrison, J.N. Kellams, T.L. Mann, A.D. McInturff, N. Pogue, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work is supported by grants from the State of Texas (ASE) and from the Mitchell Family Foundation.
Quadrupole focusing channels are integrated into the pole faces of a superconducting sector cyclotron, to enable control of the betatron tunes for all orbits. This provision makes it possible to lock the tunes to desired values for all orbits, thereby eliminating resonance crossing and facilitating local orbit bumps for injection and extraction. Optical control is of particular importance for applications where higher beam current is desired, for ADS fission drivers, for spallation neutron sources, and for medical isotope production.
 
 
TUPPD047 Injection Sequence for High-power Isochronous Cyclotrons for ADS Fission 1509
 
  • S. Assadi, K.E. Badgley, C. Collins, J. Comeaux, R. Garrison, P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work is supported by grants from the State of Texas (ASE) and the Mitchell Family Foundation.
A high-current injector sequence is being developed for use in a flux-coupled stack of high-current cyclotrons for accelerator-driven subcritical (ADS) fission. The design includes an ECR ion source, LEBT, RF quadrupole, and multi-stage chopper. A first cyclotron then accelerates the beams to 100 MeV for injection to the sector isochronous cyclotron. Provisions for control of emittance and bunch tails are described.