Author: Bungau, A.
Paper Title Page
THPPR073 Target Studies for the Production of Lithium 8 for Neutrino Physics Using a Low Energy Cyclotron 4145
 
  • A. Bungau, R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • J.M. Conrad, J. Spitz
    MIT, Cambridge, Massachusetts, USA
  • M. Shaevitz
    Columbia University, New York, USA
 
  Lithium 8 is a short lived beta emitter producing a high energy anti-neutrino, which is very suitable for making several measurements of fundamental quantities. It is proposed to produce Lithium 8 with a commercially available 60 MeV cyclotron using protons or alpha particles on a Beryllium 9 target. We have used the GEANT4 program to model these processes, and calculate the antineutrino fluxes that could be obtained in a practical system. We also calculate the production of undesirable contaminants such as Boron 8, and show that these can be reduced to a very low level.  
 
THPPR074 Simulations of Pion Production in the DAEδALUS Target 4148
 
  • A. Bungau, R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • J.M. Conrad, T. Smidt, J. Spitz
    MIT, Cambridge, Massachusetts, USA
  • M. Shaevitz
    Columbia University, New York, USA
 
  DAEδALUS, the Decay At-rest Experiment for δCP At the Laboratory for Underground Science will look for evidence of CP-violation in the neutrino sector, which may explain the matter/antimatter asymmetry in our universe. It will make precision measurements of oscillations of anti-muon neutrinos to anti-electron neutrinos using multiple neutrino sources created by low-cost compact cyclotrons. DAEδALUS will utilize a decay-at-rest neutrino beam produced by 800 MeV protons impacting a graphite target. Two well established Monte Carlo codes, MARS and GEANT4, have been used to optimize the design and the performance of the target. A benchmarking of the results obtained with these codes is also presented in this paper.  
 
THPPR076 Optimising Neutron Production From Compact Low Energy Accelerators 4154
 
  • N. Ratcliffe, R.J. Barlow, A. Bungau, R. Cywinski
    University of Huddersfield, Huddersfield, United Kingdom
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  There is currently much development in accelerator based methods to provide flexible and reliable neutron generators, in response to a decline in the availability of nuclear reactors. In this paper the focus is on neutron production via a low energy DC proton accelerator (1-10 MeV) and light target system. GEANT4 simulations are being used to study various aspects of target design, beginning with studies into light targets, such as lithium and beryllium, which are already in use. Initially the aim is to replicate these designs and benchmark these simulations, with other models and experimental results, before investigating how modifications can improve neutron production and tailor experimental geometries to specific applications such as neutron capture therapy and medical isotope production.