Author: Bross, A.D.
Paper Title Page
MOPPR070 Beam Profile Measurement in MTA Beam Line for High Pressure RF Cavity Beam Test 948
  • M.R. Jana, A.D. Bross, S. Geer, C. Johnstone, T. Kobilarcik, G.M. Koizumi, M.A. Leonova, A. Moretti, M. Popovic, T.A. Schwarz, A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia, USA
  • M. Chung
    Handong Global University, Pohang, Republic of Korea
  • M.G. Collura
    Politecnico di Torino, Torino, Italy
  • B.T. Freemire, P.M. Hanlet, Y. Torun
    IIT, Chicago, Illinois, USA
  Funding: This work is supported by the United States Department of Energy under contract DE-AC02-07CH11359.
The recent High Pressure RF (HPRF) cavity experiment at the MuCool Test Area (MTA) used a 400 MeV Linac proton beam to study the beam loading effect. When the energetic proton beam passes through the cavity, it ionizes the inside gas and produces electrons. These electrons consume RF power inside the cavity. The number of electrons produced per cm inside the cavity (at 950 psi Hydrogen gas) per incident proton is 1200. The measurement of beam position and profile are necessary. The MTA is a flammable gas (Hydrogen) hazard zone, so we have developed a passive beam diagnostic instrument using a Chromox-6 scintillation screen and CCD camera. This paper presents quantitative information about beam position and beam profile. A neutral density filter was used to avoid saturation of the CCD camera. Image data is filtered and fitted with a Gaussian function to compute the beam size. The beam profile obtained from the scintillation screen will be compared with a multi-wire beam profile.
TUPPD005 Design Concept for Nu-STORM: an Initial “Very Low-Energy Neutrino Factory” 1413
  • D.V. Neuffer, A.D. Bross, S. Geer, A. Liu, M. Popovic
    Fermilab, Batavia, USA
  • C.M. Ankenbrandt, T.J. Roberts
    Muons, Inc, Batavia, USA
  Funding: US DOE under contract DE-AC02-07CH11359
We present a design concept for a Nu-source from a STORage ring for Muons - NuSTORM. In this initial design a high-intensity proton beam produces ~5 GeV pions that provide muons that are captured using “stochastic injection” within a ~3.6 GeV racetrack storage ring. In “stochastic injection”, the ~53 GeV pion beam is transported from the target into the storage ring, dispersion-matched into a long straight section. (Circulating and injection orbits are separated by momentum.) Decays within that straight section provide muons that are within the ~2 GeV/c ring momentum acceptance and are stored for the muon lifetime of ~1000 turns. Muon (and pion) decays in the long straight sections provide neutrino beams that can be used for precision measurements of neutrino interactions, and neutrino oscillations or disappearance at L/E=~1 m/MeV. The facility is described and variations are discussed.
THPPP093 Progress on MICE RFCC Module 3954
  • D. Li, D.L. Bowring, A.J. DeMello, S.A. Gourlay, M.A. Green, N. Li, T.O. Niinikoski, H. Pan, S. Prestemon, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California, USA
  • A.D. Bross, R.H. Carcagno, V. Kashikhin, C. Sylvester
    Fermilab, Batavia, USA
  • Y. Cao, S. Sun, L. Wang, L. Yin
    SINAP, Shanghai, People's Republic of China
  • A.B. Chen, B. Guo, L. Li, F.Y. Xu
    ICST, Harbin, People's Republic of China
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois, USA
  • T.H. Luo, D.J. Summers
    UMiss, University, Mississippi, USA
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231, US Muon Accelerator Program and NSF MRI award: 0959000.
Recent progress on the design and fabrication of the RFCC (RF and Coupling Coil) module for the international MICE (Muon Ionization Cooling Experiment) will be reported. The MICE ionization cooling channel has two RFCC modules; each having four 201-MHz normal conducting RF cavities surrounded by one superconducting coupling coil (solenoid) magnet. The magnet is designed to be cooled by 3 cryocoolers. Fabrication of the RF cavities is complete; preparation for the cavity electro-polishing, low power RF measurements and tuning are in progress at LBNL. Fabrication of the cold mass of the first coupling coil magnet has been completed in China and the cold mass arrived at LBNL in late 2011. Preparations for testing the cold mass are currently under way at Fermilab. Plans for the RFCC module assembly and integration are being developed and will be described.