Author: Bottura, L.
Paper Title Page
THPPD009 Accelerator Magnets R&D Programme at CERN 3512
 
  • D. Tommasini, L. Bottura, G. De Rijk, L. Rossi
    CERN, Geneva, Switzerland
 
  The exploitation and evolution of the CERN accelerator complex pose a continuous challenge for magnet engineers. Superconducting and resistive magnets have a comparable share. The overall mass of either is approximately 50,000 tons, spread over 3 major machines (PS, SPS and LHC), two large experimental area, and a number of smaller experiments and accelerator rings. On the short term (2012-2014) the CERN plan is to upgrade its injection chain (Linac4) and experimental area (HIE-Isolde, ELENA) that require mostly a multitude of resistive magnets. The medium-term plan for the evolution of the LHC complex (2015-2021), also referred to as High-Luminosity LHC, foresees interventions on about 1 km of the machine, with magnets to be substituted with higher field, larger aperture, or both. On the long term (2025-2035) we are exploring the technological challenges of very high field magnets, at the verge of 20 T for a High Energy LHC (HE-LHC), or extremely stable high gradient quadrupoles for the Compact Linear Collider (CLIC). In this paper we provide an overview of the R&D activities addressing the various lines of development, the technology milestones, and a broad time schedule.