Author: Boland, M.J.
Paper Title Page
MOPPR001 Resonant Spin Depolarisation Measurements at the SPEAR3 Electron Storage Ring 771
  • K.P. Wootton, R.P. Rassool
    The University of Melbourne, Melbourne, Australia
  • M.J. Boland, Y.E. Tan
    ASCo, Clayton, Victoria, Australia
  • W.J. Corbett, M.H. Donald, X. Huang, R.R. Ortiz, J.A. Safranek, K. Tian
    SLAC, Menlo Park, California, USA
  Accurate electron beam energy measurements are valuable for precision lattice modelling of high-brightness light sources. At SPEAR3 the beam energy was measured using the resonant spin depolarisation method with striplines to resonantly excite the spin tune and a sensitive NaI scintillator beam loss monitor was used to detect resulting changes in Touschek lifetime. Using the combined apparatus an electron beam energy of 2.997251(7) GeV was measured, giving a relative uncertainty better than 3x10-6. The measured momentum compaction factor was found to be in close agreement with the numerical model value using rectangular defocussing gradient dipoles with measured magnetic field map profiles. In this paper we outline the chosen experimental technique, with emphasis on its applicability to electron storage rings in general.  
TUPPC086 Conceptual Design of the CLIC damping rings 1368
  • Y. Papaphilippou, F. Antoniou, M.J. Barnes, S. Calatroni, P. Chiggiato, R. Corsini, A. Grudiev, J. Holma, T. Lefèvre, M. Martini, M. Modena, N. Mounet, A. Perin, Y. Renier, G. Rumolo, S. Russenschuck, H. Schmickler, D. Schoerling, D. Schulte, M. Taborelli, G. Vandoni, F. Zimmermann
    CERN, Geneva, Switzerland
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • A. Bernhard
    KIT, Karlsruhe, Germany
  • M.J. Boland
    ASCo, Clayton, Victoria, Australia
  • A.V. Bragin, E.B. Levichev, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Koukovini
    EPFL, Lausanne, Switzerland
  • M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • M.T.F. Pivi, S.R. Smith
    SLAC, Menlo Park, California, USA
  • R.P. Rassool, K.P. Wootton
    The University of Melbourne, Melbourne, Australia
  • L. Rinolfi
    JUAS, Archamps, France
  • A. Vivoli
    Fermilab, Batavia, USA
  The CLIC damping rings are designed to produce unprecedentedly low-emittances of 500 nm and 5 nm normalized at 2.86 GeV, in all beam dimensions with high bunch charge, necessary for the performance of the collider. The large beam brightness triggers a number of beam dynamics and technical challenges. Ring parameters such as energy, circumference, lattice, momentum compaction, bending and super-conducting wiggler fields are carefully chosen in order to provide the target emittances under the influence of intrabeam scattering but also reduce the impact of collective effects such as space-charge and coherent synchrotron radiation. Mitigation techniques for two stream instabilities have been identified and tested. The low vertical emittance is achieved by modern orbit and coupling correction techniques. Design considerations and plans for technical system, such as damping wigglers, transfer systems, vacuum, RF cavities, instrumentation and feedback are finally reviewed.