Author: Betts, S.M.
Paper Title Page
WEPPP032 Inverse Free Electron Laser Acceleration Using Ultra-fast Solid State Laser Technology 2795
 
  • S.G. Anderson, G.G. Anderson, S.M. Betts, S.E. Fisher, D.J. Gibson, A.M. Tremaine, S.S.Q. Wu
    LLNL, Livermore, California, USA
  • J.T. Moody, P. Musumeci
    UCLA, Los Angeles, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
We present a theoretical and computational study of the application of Ti:Sapphire laser technology to Inverse Free Electron Laser (IFEL) accelerators. Specifically, the regime in which the number of undulator periods is comparable to the number of cycles in the laser pulse is investigated and modifications to the IFEL accelerator equations and laser requirements are given. 1-D and 3-D simulations are used to study the IFEL interaction in this regime. In addition, the effects of non-Gaussian laser pulses, and astigmatic aberrations in the laser focus are analyzed. Finally, the tools developed for this study are applied to the LLNL/UCLA IFEL experiment, and potential future IFEL designs.