Author: Bernhard, A.
Paper Title Page
TUPPC086 Conceptual Design of the CLIC damping rings 1368
  • Y. Papaphilippou, F. Antoniou, M.J. Barnes, S. Calatroni, P. Chiggiato, R. Corsini, A. Grudiev, J. Holma, T. Lefèvre, M. Martini, M. Modena, N. Mounet, A. Perin, Y. Renier, G. Rumolo, S. Russenschuck, H. Schmickler, D. Schoerling, D. Schulte, M. Taborelli, G. Vandoni, F. Zimmermann
    CERN, Geneva, Switzerland
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • A. Bernhard
    KIT, Karlsruhe, Germany
  • M.J. Boland
    ASCo, Clayton, Victoria, Australia
  • A.V. Bragin, E.B. Levichev, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Koukovini
    EPFL, Lausanne, Switzerland
  • M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • M.T.F. Pivi, S.R. Smith
    SLAC, Menlo Park, California, USA
  • R.P. Rassool, K.P. Wootton
    The University of Melbourne, Melbourne, Australia
  • L. Rinolfi
    JUAS, Archamps, France
  • A. Vivoli
    Fermilab, Batavia, USA
  The CLIC damping rings are designed to produce unprecedentedly low-emittances of 500 nm and 5 nm normalized at 2.86 GeV, in all beam dimensions with high bunch charge, necessary for the performance of the collider. The large beam brightness triggers a number of beam dynamics and technical challenges. Ring parameters such as energy, circumference, lattice, momentum compaction, bending and super-conducting wiggler fields are carefully chosen in order to provide the target emittances under the influence of intrabeam scattering but also reduce the impact of collective effects such as space-charge and coherent synchrotron radiation. Mitigation techniques for two stream instabilities have been identified and tested. The low vertical emittance is achieved by modern orbit and coupling correction techniques. Design considerations and plans for technical system, such as damping wigglers, transfer systems, vacuum, RF cavities, instrumentation and feedback are finally reviewed.  
TUPPP011 Simulations of Fringe Fields and Multipoles for the ANKA Storage Ring Bending Magnets 1626
  • M. Streichert, M.J. Nasse
    Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • V. Afonso Rodriguez, A. Bernhard, N. Hiller, E. Huttel, V. Judin, B. Kehrer, M. Klein, S. Marsching, C.A.J. Meuter, A.-S. Müller, M. Schwarz, N.J. Smale
    KIT, Karlsruhe, Germany
  Funding: This work has been supported by the Initiative and Networking Fund of the Helmholtz Association under contract number VH-NG-320.
ANKA is the synchrotron light source of the Karlsruhe Institute of Technology (KIT). With a maximum particle energy of 2.5 GeV, the storage ring lattice consists of 16 bending magnets with a nominal magnetic flux density of 1.5 T. For the beam dynamics simulations the consideration of the fringe fields and multipoles is essential. A reference measurement of the longitudinal magnetic flux density profile of a bending magnet exists for a current of 650 A, corresponding to a particle energy of 2.46 GeV. For lower beam energies where the magnets are no longer close to saturation, however, the exact density profiles may vary significantly. In order to derive fringe fields and multipole components for different beam energies, simulations of the magnetic flux density for different beam energies were conducted using a finite element method (FEM). We present the results of the simulations and demonstrate the improvements of the beam dynamics simulations in AT (Accelerator Toolbox).