Author: Belver-Aguilar, C.
Paper Title Page
MOPPR043 Design, Construction and Calibration of a First Prototype of Beam Position System for Hadron Therapy Facilities 876
 
  • A. Faus-Golfe, C. Belver-Aguilar, C. Blanch Gutierrez, J.J. García-Garrigós
    IFIC, Valencia, Spain
  • E. Benveniste, M. Haguenauer, P. Poilleux
    LLR, Palaiseau, France
 
  Funding: AIC10-D-000518 and AIC-D-2011-0673.
Beam Position Monitors (BPM) are essential elements in the instrumentation for the beam control in hadron therapy accelerators. The measurement of the beam position become more important at the secondary transport lines towards the patient room where this parameter must be completely determined. In this paper we describe the design, construction, read-out electronics and first calibration tests of a new type of BPM based on four scintillating fibers coupled to four photodiodes to detect the light produced by the fibers when intercepting the beam tails. The prototype will serve to evaluate the different design options in the mechanical and the read-out electronics implementation as well as to define the best processing method to get the beam position.
 
 
TUPPC086 Conceptual Design of the CLIC damping rings 1368
 
  • Y. Papaphilippou, F. Antoniou, M.J. Barnes, S. Calatroni, P. Chiggiato, R. Corsini, A. Grudiev, J. Holma, T. Lefèvre, M. Martini, M. Modena, N. Mounet, A. Perin, Y. Renier, G. Rumolo, S. Russenschuck, H. Schmickler, D. Schoerling, D. Schulte, M. Taborelli, G. Vandoni, F. Zimmermann
    CERN, Geneva, Switzerland
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • A. Bernhard
    KIT, Karlsruhe, Germany
  • M.J. Boland
    ASCo, Clayton, Victoria, Australia
  • A.V. Bragin, E.B. Levichev, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Koukovini
    EPFL, Lausanne, Switzerland
  • M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • M.T.F. Pivi, S.R. Smith
    SLAC, Menlo Park, California, USA
  • R.P. Rassool, K.P. Wootton
    The University of Melbourne, Melbourne, Australia
  • L. Rinolfi
    JUAS, Archamps, France
  • A. Vivoli
    Fermilab, Batavia, USA
 
  The CLIC damping rings are designed to produce unprecedentedly low-emittances of 500 nm and 5 nm normalized at 2.86 GeV, in all beam dimensions with high bunch charge, necessary for the performance of the collider. The large beam brightness triggers a number of beam dynamics and technical challenges. Ring parameters such as energy, circumference, lattice, momentum compaction, bending and super-conducting wiggler fields are carefully chosen in order to provide the target emittances under the influence of intrabeam scattering but also reduce the impact of collective effects such as space-charge and coherent synchrotron radiation. Mitigation techniques for two stream instabilities have been identified and tested. The low vertical emittance is achieved by modern orbit and coupling correction techniques. Design considerations and plans for technical system, such as damping wigglers, transfer systems, vacuum, RF cavities, instrumentation and feedback are finally reviewed.  
 
TUPPR016 Final Cross Section Design of the Stripline Kicker for the CLIC Damping Rings 1843
 
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • M.J. Barnes
    CERN, Geneva, Switzerland
  • F. Toral
    CIEMAT, Madrid, Spain
 
  Funding: IDC-20101074 and FPA2010-21456-C02-01
The CLIC design relies on the presence of Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve, through synchrotron radiation, the very low emittance needed to fulfill the luminosity requirements. Kicker systems are required to inject and extract the beam from the Pre-Damping and Damping Rings. In order to achieve low beam coupling impedance and reasonable broadband impedance matching to the electrical circuit, striplines have been chosen for the kicker elements. In this paper the final design for the DR kicker is presented, including an optimization of the geometric parameters to achieve the requirements for both characteristic impedance and field homogeneity. In addition, a sensitivity analysis of characteristic impedance and field homogeneity to geometric parameters is reported.
 
 
TUPPR018 Beam Impedance Study of the Stripline Kicker for the CLIC Damping Ring 1849
 
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • M.J. Barnes
    CERN, Geneva, Switzerland
  • I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
 
  Funding: FPA2010-21456-C02-01
CLIC Pre-Damping (PDR) and Damping Rings (DR) are required for reducing the emittance of the electron and positron beams before being accelerated in the main linac. Several stripline kicker systems are used to inject and extract the beam from the PDR and DR. Wakefields produced by the charged particles when passing through the aperture of the stripline kickers may become an important source of emittance growth; for this reason, simulations of longitudinal and transverse beam impedance in the frequency domain, and their equivalent in the time domain are needed. First analytical approaches, future simulations and tests planned are presented in this paper.