Author: Barnes, M.J.
Paper Title Page
TUPPC086 Conceptual Design of the CLIC damping rings 1368
 
  • Y. Papaphilippou, F. Antoniou, M.J. Barnes, S. Calatroni, P. Chiggiato, R. Corsini, A. Grudiev, J. Holma, T. Lefèvre, M. Martini, M. Modena, N. Mounet, A. Perin, Y. Renier, G. Rumolo, S. Russenschuck, H. Schmickler, D. Schoerling, D. Schulte, M. Taborelli, G. Vandoni, F. Zimmermann
    CERN, Geneva, Switzerland
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • A. Bernhard
    KIT, Karlsruhe, Germany
  • M.J. Boland
    ASCo, Clayton, Victoria, Australia
  • A.V. Bragin, E.B. Levichev, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Koukovini
    EPFL, Lausanne, Switzerland
  • M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • M.T.F. Pivi, S.R. Smith
    SLAC, Menlo Park, California, USA
  • R.P. Rassool, K.P. Wootton
    The University of Melbourne, Melbourne, Australia
  • L. Rinolfi
    JUAS, Archamps, France
  • A. Vivoli
    Fermilab, Batavia, USA
 
  The CLIC damping rings are designed to produce unprecedentedly low-emittances of 500 nm and 5 nm normalized at 2.86 GeV, in all beam dimensions with high bunch charge, necessary for the performance of the collider. The large beam brightness triggers a number of beam dynamics and technical challenges. Ring parameters such as energy, circumference, lattice, momentum compaction, bending and super-conducting wiggler fields are carefully chosen in order to provide the target emittances under the influence of intrabeam scattering but also reduce the impact of collective effects such as space-charge and coherent synchrotron radiation. Mitigation techniques for two stream instabilities have been identified and tested. The low vertical emittance is achieved by modern orbit and coupling correction techniques. Design considerations and plans for technical system, such as damping wigglers, transfer systems, vacuum, RF cavities, instrumentation and feedback are finally reviewed.  
 
TUPPR016 Final Cross Section Design of the Stripline Kicker for the CLIC Damping Rings 1843
 
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • M.J. Barnes
    CERN, Geneva, Switzerland
  • F. Toral
    CIEMAT, Madrid, Spain
 
  Funding: IDC-20101074 and FPA2010-21456-C02-01
The CLIC design relies on the presence of Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve, through synchrotron radiation, the very low emittance needed to fulfill the luminosity requirements. Kicker systems are required to inject and extract the beam from the Pre-Damping and Damping Rings. In order to achieve low beam coupling impedance and reasonable broadband impedance matching to the electrical circuit, striplines have been chosen for the kicker elements. In this paper the final design for the DR kicker is presented, including an optimization of the geometric parameters to achieve the requirements for both characteristic impedance and field homogeneity. In addition, a sensitivity analysis of characteristic impedance and field homogeneity to geometric parameters is reported.
 
 
TUPPR018 Beam Impedance Study of the Stripline Kicker for the CLIC Damping Ring 1849
 
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • M.J. Barnes
    CERN, Geneva, Switzerland
  • I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
 
  Funding: FPA2010-21456-C02-01
CLIC Pre-Damping (PDR) and Damping Rings (DR) are required for reducing the emittance of the electron and positron beams before being accelerated in the main linac. Several stripline kicker systems are used to inject and extract the beam from the PDR and DR. Wakefields produced by the charged particles when passing through the aperture of the stripline kickers may become an important source of emittance growth; for this reason, simulations of longitudinal and transverse beam impedance in the frequency domain, and their equivalent in the time domain are needed. First analytical approaches, future simulations and tests planned are presented in this paper.
 
 
TUPPR090 Analysis of Ferrite Heating of the LHC Injection Kickers and Proposals for Future Reduction of Temperature 2038
 
  • M.J. Barnes, L. Ducimetière, N. Garrel, B. Goddard, V. Mertens, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The two LHC injection kicker magnet (MKI) systems produce a kick of 1.3 T-m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen, consisting of a ceramic tube with conductors on the inner wall, is placed in the aperture of the magnets. The conductors provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against wake fields. The conductors initially used gave adequately low beam coupling impedance however inter-conductor discharges occurred during pulsing of the magnet; hence an alternative design was implemented to meet the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time and good high voltage behaviour. During 2011 the LHC has been operated with high intensity beam, coasting for many hours at a time, resulting in heating of both the ferrite yoke and beam impedance reduction ferrites, of the MKIs. This paper presents an analysis of thermal measurement data and an extrapolation of the heating for future operation; in addition means are discussed for reducing ferrite heating and improving cooling.  
 
TUPPR092 Transient Beam Losses in the LHC Injection Kickers from Micron Scale Dust Particles 2044
 
  • B. Goddard, P. Adraktas, T. Baer, M.J. Barnes, F. Cerutti, A. Ferrari, N. Garrel, A.H.J. Gerardin, M. Guinchard, A. Lechner, A. Masi, V. Mertens, R. Morón Ballester, S. Redaelli, J.A. Uythoven, V. Vlachoudis, F. Zimmermann
    CERN, Geneva, Switzerland
 
  Transient beam losses on a time scale of a few ms have been observed in the LHC injection kickers, occurring mainly shortly after beam injection with a strong correlation in time to the kicker pulsing. The beam losses, which have at times affected LHC availability, are attributed to micron scale ceramic dust particles detached from the alumina beam pipe and accelerated into the beam. The beam related observations are described, together with laboratory measurements of beam pipe contamination and kicker vibration, simulations of electric field in the beam pipe and the basic dynamic model. Energy deposition simulations modelling the beam losses are presented and compared to measurement. Extrapolations to future LHC operation at higher intensities and energies are made, and prospects for mitigation are discussed.  
 
WEPPR071 Evaluation of the Beam Coupling Impedance of New Beam Screen Designs for the LHC Injection Kicker Magnets 3093
 
  • H.A. Day, R.M. Jones
    UMAN, Manchester, United Kingdom
  • M.J. Barnes, F. Caspers, H.A. Day, E. Métral, B. Salvant
    CERN, Geneva, Switzerland
 
  During the 2011 run of the LHC there was a measured temperature increase in the LHC Injection Kicker Magnets (LHC-MKI) during operation with 50ns bunch spacing. This was suspected to be due to increased beam-induced heating of the magnet due to beam impedance. Due to concerns about future heating with the increased total intensity to nominal and ultimate luminosities a review of the impedance reduction techniques within the magnet was required. A number of new beam screen designs are proposed and their impedance evaluated. Heating estimates are also given with a particular attention paid to future intensity upgrades to ultimate and HL-LHC parameters.  
 
THPPC061 A 12 kV, 1 kHz, Pulse Generator for Breakdown Studies of Samples for CLIC RF Accelerating Structures 3431
 
  • R.H. Soares, M.J. Barnes, S. Calatroni, J.W. Kovermann, W. Wuensch
    CERN, Geneva, Switzerland
 
  Compact Linear Collider (CLIC) RF structures must be capable of sustaining high surface electric fields, in excess of 200 MV/m, with a breakdown (BD) rate below 3×10-7 breakdowns/pulse/m. Achieving such a low rate requires a detailed understanding of all the steps involved in the mechanism of breakdown. One of the fundamental studies is to investigate the statistical characteristics of the BD rate phenomenon at very low values to understand the origin of an observed dependency of the surface electric field raised to the power of 30. To acquire sufficient BD data, in a reasonable period of time, a high repetition rate pulse generator is required for an existing d.c. spark system at CERN. Following BD of the material sample the pulse generator must deliver a current pulse of several 10’s of Amperes for ~2 μs. A high repetition rate pulse generator has been designed, built and tested; this utilizes pulse forming line technology and employs MOSFET switches. This paper describes the design of the pulse generator and presents measurement results.  
 
THPPD074 Effect of a Metallized Chamber upon the Field Response of a Kicker Magnet: Simulation Results and Analytical Calculations 3686
 
  • M.J. Barnes, M.G. Atanasov, T. Fowler, T. Kramer, T. Stadlbauer
    CERN, Geneva, Switzerland
 
  Metallized racetrack vacuum chambers will be used in the pulsed magnets of the Austrian cancer therapy and research facility, MedAustron. It is important that the metallization does not unduly degrade field rise and fall times or the flattop of the field pulse in the pulsed magnets. This was of particular concern for a tune kicker magnet, which has a specified rise and fall time of 100 ns. The impact of the metallization, upon the transient field response, has been determined by finite element method (FEM) simulations: the dependency of the field response to the metallization thickness and resistivity are presented. Formulae for the field response, which permit the use of a ramped transient excitation current, are presented: thus the coating thickness and resistivity can be determined which result in a maximum permissible field attenuation and delay for a given current rise time. In addition, results of simulations of the effect of a magnetic brazing collar, located between the ceramic vacuum chamber and flange, are reported.  
 
THPPD075 Design and Measurements of a Fast High-voltage Pulse Generator for the MedAustron Low Energy Transfer Line Fast Deflector 3689
 
  • T. Fowler, M.J. Barnes, T. Kramer, F. Müller, T. Stadlbauer
    CERN, Geneva, Switzerland
 
  MedAustron, a centre for ion-therapy and research, will comprise an accelerator facility based on a synchrotron for the delivery of protons and light ions for cancer treatment. The Low Energy Beam Transfer line (LEBT) to the synchrotron contains an electrostatic fast deflector (EFE) which, when energized, deviates the continuous beam arriving from the ion source onto a Faraday Cup: the specified voltage is ±3.5 kV. De-energizing the EFE for variable pulse durations from 500 ns up to d.c. allows beam passage for multi-turn injection into the synchrotron. To maintain beam quality in the synchrotron, the EFE pulse generator requires rise and fall times of less than 300 ns between 90 % of peak voltage and a ±1 V level. To achieve this, a pulsed power supply (PKF), with high voltage MOSFET switches connected in a push-pull configuration, will be mounted in close proximity to the deflector itself. A fast, large dynamic range monitoring circuit will verify switching to the ±1 V level and subsequent flat bottom pulse quality. A prototype will be installed in the injector test stand in 2012; this paper presents the design and first measurements of the PKF and its monitoring circuit.  
 
THPPD076 Evaluation of Components for the High Precision Inductive Adder for the CLIC Damping Rings 3692
 
  • J. Holma, M.J. Barnes
    CERN, Geneva, Switzerland
 
  The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. In addition to semiconductors working in their saturated region, semiconductors working in their linear region are needed for applying analogue modulation techniques. Simulations have been carried out to define component specifications for the inductive adder: this paper reports the results of tests and measurements of various components.  
 
THPPP086 UFOs in the LHC: Observations, Studies and Extrapolations 3936
 
  • T. Baer, M.J. Barnes, F. Cerutti, A. Ferrari, N. Garrel, B. Goddard, E.B. Holzer, S. Jackson, A. Lechner, V. Mertens, M. Misiowiec, E. Nebot Del Busto, A. Nordt, J.A. Uythoven, V. Vlachoudis, J. Wenninger, C. Zamantzas, F. Zimmermann
    CERN, Geneva, Switzerland
  • T. Baer
    University of Hamburg, Hamburg, Germany
  • N. Fuster Martinez
    Valencia University, Atomic Molecular and Nuclear Physics Department, Valencia, Spain
 
  Unidentified falling objects (UFOs) are potentially a major luminosity limitation for nominal LHC operation. They are presumably micrometer sized dust particles which lead to fast beam losses when they interact with the beam. With large-scale increases and optimizations of the beam loss monitor (BLM) thresholds, their impact on LHC availability was mitigated from mid 2011 onwards. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. In 2011/12, the diagnostics for UFO events were significantly improved: dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge, extrapolations for nominal LHC operation and mitigation strategies are presented.