Author: Bajt, S.
Paper Title Page
MOPPR019 Beam Profile Imaging Based on Backward Transition Radiation in the Extreme Ultraviolet Region 819
 
  • L.G. Sukhikh, S. Bajt, G. Kube
    DESY, Hamburg, Germany
  • W. Lauth
    IKP, Mainz, Germany
  • Yu.A. Popov, A. Potylitsyn
    Tomsk Polytechnic University, Tomsk, Russia
 
  Backward transition radiation (BTR) in the optical spectral region is widely used for beam profile diagnostics in modern electron linacs. However, the experience from linac based light sources shows that BTR diagnostics might fail because of coherence effects in the emission process. To overcome this problem of coherent emission it was proposed to use BTR in the extreme ultraviolet (EUV) region*, and measurements of the angular EUV BTR distribution were presented in Ref. **. This contribution summarizes the results of a beam profile imaging experiment using EUV BTR. The experiment was carried out using the 855 MeV electron beam of the Mainz Microtron MAMI. EUV BTR was generated at a molybdenum target deposited onto a silicon substrate, and imaging was realized using a spherical multilayer mirror which was optimized for a wavelength of 19 nm. Preliminary results will be presented and compared to ordinary optical BTR imaging together with a discussion of future possibilities of the proposed diagnostic method.
* L.G. Sukhikh et al., Nucl. Instrum. Methods A623, 567 (2010).
** L.G. Sukhikh et al., Proc. of DIPAC-2011, Hamburg (Germany), 544 (2011).