Author: Bailey, B.J.
Paper Title Page
TUPPP037 Status of the ALS Brightness Upgrade 1692
 
  • C. Steier, B.J. Bailey, A. Biocca, A.T. Black, D. Colomb, N. Li, A. Madur, S. Marks, H. Nishimura, G.C. Pappas, S. Prestemon, D. Robin, S.L. Rossi, T. Scarvie, D. Schlueter, C. Sun, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Advanced Light Source (ALS) at Berkeley Lab while one of the earliest 3rd generation light sources remains one of the brightest sources for sof x-rays. Another multiyear upgrade of the ALS is currently under way, which includes new and replacement x-ray beamlines, a replacement of many of the original insertion devices and many upgrades to the accelerator. The accelerator upgrade that affects the ALS performance most directly is the ALS brightness upgrade, which will reduce the horizontal emittance from 6.3 to 2.2 nm (2.6 nm effective). This will result in a brightness increase by a factor of three for bendmagnet beamlines and at least a factor of two for insertion device beamlines. Magnets for this upgrade are currently under production and will be installed later this year.
 
 
WEEPPB004 Status of the APEX Project at LBNL 2173
 
  • F. Sannibale, B.J. Bailey, K.M. Baptiste, J.M. Byrd, C.W. Cork, J.N. Corlett, S. De Santis, L.R. Doolittle, J.A. Doyle, P. Emma, J. Feng, D. Filippetto, G. Huang, H. Huang, T.D. Kramasz, S. Kwiatkowski, W.E. Norum, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, G.J. Portmann, J. Qiang, D.G. Quintas, J.W. Staples, T. Vecchione, M. Venturini, M. Vinco, W. Wan, R.P. Wells, M.S. Zolotorev, F.A. Zucca
    LBNL, Berkeley, California, USA
  • M. J. Messerly, M.A. Prantil
    LLNL, Livermore, California, USA
  • C.M. Pogue
    NPS, Monterey, California, USA
 
  Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231.
The Advanced Photo-injector Experiment (APEX) at the Lawrence Berkeley National Laboratory is focused on the development of a high-brightness high-repetition rate (MHz-class) electron injector for X-ray FEL applications. The injector is based on a new concept gun, utilizing a normal conducting 186 MHz RF cavity operating in cw mode in conjunction with high quantum efficiency photocathodes capable of delivering the required repetition rates with available laser technology. The APEX activities are staged in 3 main phases. In Phases 0 and I, the gun will be tested at its nominal energy of 750 keV and several different photocathodes are tested at full repetition rate. In Phase II, a pulsed linac will be added for accelerating the beam at several tens of MeV to reduce space charge effects and measure the high-brightness performance of the gun when integrated in an injector scheme. At Phase II energies, the radiation shielding configuration of APEX limits the repetition rate to a maximum of several Hz. Phase 0 is under commissioning, Phase I under installation, and initial activities for Phase II are underway. This paper presents an update on the status of these activities.