Author: Arbelaez, D.
Paper Title Page
MOEPPB005 Initial Commissioning of NDCX-II 85
 
  • S.M. Lidia, D. Arbelaez, W.G. Greenway, J.-Y. Jung, J.W. Kwan, T.M. Lipton, A. Pekedis, P.K. Roy, P.A. Seidl, J.H. Takakuwa, W.L. Waldron
    LBNL, Berkeley, California, USA
  • A. Friedman, D.P. Grote, W. M. Sharp
    LLNL, Livermore, California, USA
  • E.P. Gilson
    PPPL, Princeton, New Jersey, USA
 
  Funding: This work was performed under the auspices of the U.S Department of Energy by LLNL under contract DE AC52 07NA27344, and by LBNL under contract. DE-AC02-05CH11231.
The Neutralized Drift Compression Experiment-II (NDCX-II) will generate ion beam pulses for studies of Warm Dense Matter and heavy-ion-driven Inertial Fusion Energy. The machine will accelerate 20-50 nC of Li+ to 1.2-3 MeV energy, starting from a 10.9-cm alumino-silicate ion source. At the end of the accelerator the ions are focused to a sub-mm spot size onto a thin foil (planar) target. The pulse duration is compressed from ~500 ns at the source to sub-ns at the target following beam transport in a neutralizing plasma. We first describe the injector, accelerator, transport, final focus and diagnostic facilities. We then report on the results of early commissioning studies that characterize beam quality and beam transport, acceleration waveform shaping and beam current evolution. We present WARP simulation results to benchmark against the experimental measurements.
 
 
THPPR054 Progress in the Design of a Curved Superconducting Dipole for a Therapy Gantry 4097
 
  • S. Caspi, D. Arbelaez, L.N. Brouwer, D.R. Dietderich, R.R. Hafalia, D. Robin, A. Sessler, C. Sun, W. Wan
    LBNL, Berkeley, California, USA
 
  A curved superconducting magnet for a carbon therapy gantry requires a large bore and a field around 5T. The design reduces the gantry’s size and weight and makes it more comparable with gantries used for proton therapy. In this paper we report on a combined function superconducting dipole magnet that is half the size needed for carbon gantry and is about the size of a proton gantry. The half scale, with a 130 mm bore diameter that is curved 90 degrees at a radius of 634 mm, superimposes two layers of oppositely wound and skewed solenoids that are energized in a way that nulls the solenoid field and doubles the dipole field. Furthermore, the combined architecture of the windings can create a selection of field terms that are off the near-pure dipole field. In this paper we report on the design of a two layers curved coil and the production of the winding mandrel. Some details on the magnet assembly are included.