Author: Alsari, S.M.H.
Paper Title Page
MOPPD037 Investigation of Space Charge Compensation at FETS 445
 
  • J.K. Pozimski, S.M.H. Alsari, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • D.C. Faircloth, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  In order to contribute to the development of high power proton accelerators in the MW range, to prepare the way for an ISIS upgrade and to contribute to the UK design effort on neutrino factories, a front end test stand (FETS) is being constructed at the Rutherford Appleton Laboratory (RAL) in the UK. The aim of the FETS is to demonstrate the production of a 60 mA, 2 ms, 50 pps chopped beam at 3 MeV with sufficient beam quality. The ion source and LEBT are operational with the RFQ under manufacture. In the LEBT a high degree of space charge compensation (~90%) and a rise time of space charge compensation around ~ 50 μs could be concluded indirectly from measurements . As a more detailed knowledge is of interest also for other projects like ESS the FETS LEBT was updated to perform a detailed experimental analysis of space charge compensation. In this paper the results of the experimental work will be presented together with discussion of the findings in respect to beam transport.  
 
THPPP051 Status of the RAL Front End Test Stand 3856
 
  • A.P. Letchford, M.A. Clarke-Gayther, D.C. Faircloth, S.R. Lawrie
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.M.H. Alsari, M. Aslaninejad, A. Kurup, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • J.J. Back
    University of Warwick, Coventry, United Kingdom
  • G.E. Boorman, A. Bosco
    Royal Holloway, University of London, Surrey, United Kingdom
  • C. Gabor, D.C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • A. Garbayo
    AVS, Eibar, Gipuzkoa, Spain
  • S. Jolly
    UCL, London, United Kingdom
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) under construction at RAL is a demonstrator for front end systems of a future high power proton linac. Possible applications include a linac upgrade for the ISIS spallation neutron source, new future neutron sources, accelerator driven sub-critical systems, a neutrino factory etc. Designed to deliver a 60mA H-minus beam at 3MeV with a 10% duty factor, FETS consists of a high brightness ion source, magnetic low energy beam transport (LEBT), 4-vane 324MHz radio frequency quadrupole, medium energy beam transport (MEBT) containing a high speed beam chopper plus comprehensive diagnostics. This paper describes the current status of the project and future plans.