Author: Alesini, D.
Paper Title Page
MOPPR073 Analysis of Resonant TE Wave Modulation Signals for Electron Cloud Measurements 957
 
  • S. De Santis
    LBNL, Berkeley, California, USA
  • D. Alesini
    INFN/LNF, Frascati (Roma), Italy
  • J.P. Sikora
    CLASSE, Ithaca, New York, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, PHY-1002467, and the US Department of Energy under Contracts DE-FC02-08ER41538, DE-AC02-05CH11231.
Recent TE wave measurements of the electron cloud density in the beampipe at CesrTA and DAΦNE have shown that, especially near cutoff, the microwave excitation takes place by coupling to a standing wave, rather than to a propagating TE mode. With the beampipe acting as a resonant cavity, the effect of the periodic electron cloud density is a modulation of the cavity's resonant frequency. As a result, the measured sidebands are a combination of amplitude, phase, and frequency modulation, as the periodic cloud density modulates this resonant frequency. The quality factor Q of the resonance will determine its response to transients in the electron cloud density, and the resulting effect on modulation sidebands. In order to estimate the peak electron cloud density and its spacial distribution, knowledge of the Q and the standing wave pattern need to be determined, either by experimental measurements or simulation codes. In this paper we analyze the dependence of the modulation sidebands on the electron cloud density in two different regimes, when the cloud rise/decay time is much longer, or much shorter than the filling time of the resonance.
 
 
MOPPR074 Using TE Wave Resonances for the Measurement of Electron Cloud Density 960
 
  • J.P. Sikora, M.G. Billing, D. L. Rubin, R.M. Schwartz
    CLASSE, Ithaca, New York, USA
  • D. Alesini
    INFN/LNF, Frascati (Roma), Italy
  • B.T. Carlson
    CMU, Pittsburgh, Pennsylvania, USA
  • S. De Santis
    LBNL, Berkeley, California, USA
  • K.C. Hammond
    Harvard University, Cambridge, Massachusetts, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, PHY-1002467, and the US Department of Energy under Contracts DE-FC02-08ER41538, DE-AC02-05CH11231.
In the past few years, electron cloud density has been measured by means of its effect on TE waves propagated through the accelerator vacuum chamber. This technique has been the object of careful studies and has been used in several laboratories around the world (CERN, SLAC, FNAL, Cornell, INFN-LNF). Recent measurements at CesrTA and DAΦNE show that in a majority of practical cases, the theoretical model that relates the cloud density to the phase shift induced on a TE wave propagating in beam pipe may not be the correct one. Instead, the measurement results have to be analyzed considering the effect of the electron cloud on a standing wave excited between the input and output couplers - typically Beam Position Monitors (BPMs). This standing wave pattern is not confined to the portion of beampipe between the BPMs and must be understood in order to correctly interpret the measurement. In this paper we present evidence that the transmission function near cutoff between two BPMs is the result of coupling to standing waves trapped in the vacuum chamber. This evidence includes measurements at DAΦNE, Cesr-TA, a test waveguide, computer EM simulations, and analytical calculations.
 
 
TUOBB01 A European Proposal for the Compton Gamma-ray Source of ELI-NP 1086
 
  • L. Serafini, I. Boscolo, F. Broggi, V. Petrillo
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • O. Adriani, G. Graziani, G. Passaleva
    INFN-FI, Sesto Fiorentino, Italy
  • S. Albergo, A. Tricomi
    INFN-CT, Catania, Italy
  • D. Alesini, M.P. Anania, A. Bacci, R. Bedogni, M. Bellaveglia, C. Biscari, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, E. Di Pasquale, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, A. Gallo, G. Gatti, A. Ghigo, F. Marcellini, C. Maroli, G. Mazzitelli, E. Pace, L. Pellegrino, R. Ricci, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, P. Tomassini, C. Vaccarezza, S. Vescovi, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • D. Angal-Kalinin, J.A. Clarke, B.D. Fell, A.R. Goulden, J.D. Herbert, S.P. Jamison, P.A. McIntosh, R.J. Smith, S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Antici, M. Coppola, L. Lancia, A. Mostacci, L. Palumbo
    URLS, Rome, Italy
  • N. Bliss, B.G. Martlew
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Cardarelli, M. Gambaccini
    INFN-Ferrara, Ferrara, Italy
  • L. Catani, A. Cianchi
    INFN-Roma II, Roma, Italy
  • I. Chaikovska, O. Dadoun, A. Stocchi, A. Variola, Z.F. Zomer
    LAL, Orsay, France
  • C. De Martinis
    INFN/LASA, Segrate (MI), Italy
  • F. Druon, P. Fichot
    ILE, Palaiseau Cedex, France
  • E. Iarocci
    University of Rome "La Sapienza", Rome, Italy
  • M. Migliorati
    Rome University La Sapienza, Roma, Italy
  • A.-S. Müller
    IN2P3, Paris, France
  • V. Nardone
    Università di Roma I La Sapienza, Roma, Italy
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • M. Veltri
    Uniurb, Urbino (PU), Italy
 
  A European proposal is under preparation for the Compton gamma-ray Source of ELI-NP. In the Romanian pillar of ELI (the European Extreme Light Infrastructure) an advanced gamma-ray beam is foreseen, coupled to two 10 PW laser systems. The photons will be generated by Compton back-scattering in the collision between a high quality electron beam and a high power laser. A European collaboration formed by INFN, Univ. of Roma La Sapienza, Orsay-LAL of IN2P3, Univ. de Paris Sud XI and ASTeC at Daresbury, is preparing a TDR exploring the feasibility of a machine expected to achieve the Gamma-ray beam specifications: energy tunable between 1 and 20 MeV, narrow bandwidth (0.3%) and high spectral density, 104 photons/sec/eV. We will describe the lay-out of the 720 MeV RF Linac and the collision laser with the associated optical cavity, as well as the optimized beam dynamics to achieve maximum phase space density at the collision, taking into account beam loading and beam break-up due to the acceleration of long bunch trains. The predicted gamma-ray spectra will be evaluated as the gamma photons collimators background. An option for electron bunches recirculation will also be illustrated.  
slides icon Slides TUOBB01 [5.099 MB]  
 
TUOBC03 Experimental Measurements of e-Cloud Mitigation using Clearing Electrodes in the DAΦNE Collider 1107
 
  • D. Alesini, T. Demma, A. Drago, A. Gallo, S. Guiducci, C. Milardi, P. Raimondi, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • S. De Santis
    LBNL, Berkeley, California, USA
 
  Recently the electron-positron collider DAΦNE has started delivering luminosity to the KLOE-2 experiment. For this run special metallic electrodes for e-cloud clearing were installed in all the dipole and wiggler magnets of the collider positron ring. Experimental measurements of the effectiveness of the electrodes in the mitigation of the e-cloud effects in the positron beam have been done showing an impressive effectiveness of these devices in the cure of the e-cloud effects in the positron beam. In particular the electrodes allow reducing the vertical beam size increase, the growth rate of transverse instabilities and the tune shifts induced by the electron cloud. Frequency shifts measurements of the vacuum chamber resonances switching on and off the electrodes have also been done showing their effect in the reduction of the electron cloud density. In this paper we summarize the results of all our observations and the experimental measurements of the e-cloud suppression with these electrodes.  
slides icon Slides TUOBC03 [2.825 MB]  
 
WEPPP017 Recent Results at the SPARCLAB Facility 2758
 
  • M. Ferrario, D. Alesini, M.P. Anania, M. Bellaveglia, R. Boni, M. Castellano, E. Chiadroni, G. Di Pirro, A. Drago, A. Esposito, A. Gallo, C. Gatti, G. Gatti, A. Ghigo, T. Levato, E. Pace, L. Pellegrino, R. Pompili, A.R. Rossi, B. Spataro, P. Tomassini, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A. Bacci, C. De Martinis, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • G. Dattoli, E. Di Palma, L. Giannessi, A. Petralia, M. Quattromini, C. Ronsivalle, I.P. Spassovsky, V. Surrenti
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • D. Di Giovenale
    INFN-Roma II, Roma, Italy
  • U. Dosselli
    INFN, Roma, Italy
  • R. Faccini
    INFN-Roma, Roma, Italy
  • R. Fedele
    Naples University Federico II, Mathematical, Physical and Natural Sciences Faculty, Napoli, Italy
  • M. Gambaccini
    INFN-Ferrara, Ferrara, Italy
  • D. Giulietti
    UNIPI, Pisa, Italy
  • L.A. Gizzi, L. Labate
    CNR/IPP, Pisa, Italy
  • P. Londrillo
    INFN-Bologna, Bologna, Italy
  • S. Lupi
    Università di Roma I La Sapienza, Roma, Italy
  • A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • G. Passaleva
    INFN-FI, Sesto Fiorentino, Italy
  • V. Petrillo
    Universita' degli Studi di Milano, Milano, Italy
  • J.V. Rau
    ISM-CNR, Rome, Italy
  • G. Turchetti
    Bologna University, Bologna, Italy
 
  A new facility named SPARCLAB (Sources for Plasma Accelerators and Radiation Compton with Lasers and Beams) has been recently launched at the INFN National Labs in Frascati, merging the potentialities of the old projects SPARC and PLASMONX. The SPARC project, a collaboration among INFN, ENEA and CNR, is now completed, hosting a 150 MeV high brightness electron beam injector which feeds a 12 meters long undulator. Observation of FEL radiation in the SASE, Seeded and HHG modes has been performed from 500 nm down to 40 nm wevelength. A second beam line has been also installed to drive a narrow band THz radiation source. In parallel to that, INFN decided to host a 300 TW laser that will be linked to the linac and devoted to explore laser-matter interaction, in particular with regard to laser-plasma acceleration in the self injection and external injection modes, (the PLASMONX experiments). The facility will be also used for particle driven plasma acceleration experiments (the COMB experiment). A Thomson scattering experiment coupling the electron bunch to the high-power laser to generate coherent monochromatic X-ray radiation is also in the commissioning phase.  
 
WEPPR051 Issues for a Multi-bunch Operation with SPARC C-band Cavities 3042
 
  • A. Mostacci, M. Migliorati, L. Palumbo
    URLS, Rome, Italy
  • D. Alesini, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
 
  SPARC C-band traveling wave cavities were originally designed for the SPARC energy upgrade in the single bunch operation mode. In the context of a gamma source based on Compton backscattering and based on the SPARC C-band technology, we investigated the issues related to the use of these structures in the multi-bunch operation mode. Several beam configurations have been considered and the effects of transverse and longitudinal long range wakefields on beam dynamics have been studied. In the paper we present the results of these studies and, in particular, the issues related to transverse beam break-up that could prevent the multi-bunch operation. Possible HOM damped structures are also proposed.  
 
THPPC046 Normal Conducting Radio Frequency x-band Deflecting Cavity Fabrication and Validation 3389
 
  • R.B. Agustsson, L. Faillace, A.Y. Murokh, S. Storms
    RadiaBeam, Santa Monica, USA
  • D. Alesini
    INFN/LNF, Frascati (Roma), Italy
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: U.S. DOE SBIR grant DE-FG02-05ER84370
An X-band Traveling wave Deflector mode cavity (XTD) has been developed and fabricated at Radiabeam Technologies to perform longitudinal characterization of the sub-picosecond ultra-relativistic electron beams. The device is optimized for the 100 MeV electron beam parameters at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory, and is scalable to higher energies. An XTD is designed to operate at 11.424 GHz, and features short filling time, femtosecond resolution, and a small footprint. RF design, structure fabrication, cold testing results and commissioning plans are presented.