Author: Akai, K.
Paper Title Page
TUPPR006 Design Progress and Construction Status of SuperKEKB 1822
 
  • H. Koiso, K. Akai, K. Oide
    KEK, Ibaraki, Japan
 
  KEKB operation finished in June 2010, and the upgrade of KEKB to SuperKEKB has commenced. The design luminosity of SuperKEKB is 8×1035cm-2s-1, which is 40 times higher than that of KEKB. The design strategy for SuperKEKB is based on the Nano-Beam Scheme, where the vertical beam sizes of the low-energy positron ring and the high-energy electron ring are squeezed to 50−60 nm at the interaction point with a large Piwinski angle. The beam currents in both rings will be double those in KEKB. Finalizing the design of the interaction region is going on by using precise modeling of beam optics. Dismantling KEKB rings and fabrication of accelerator components for SuperKEKB including magnets, power supplies, and antechamber-type beam pipes have already started. This paper describes design progress and construction status of SuperKEKB.  
 
THPPC079 Prototype Performance of Digital LLRF Control System for SuperKEKB 3470
 
  • T. Kobayashi, K. Akai, K. Ebihara, A. Kabe, K. Nakanishi, M. Nishiwaki, J.-I. Odagiri
    KEK, Ibaraki, Japan
  • H. Deguchi, K. Harumatsu, K. Hayashi, J. Nishio, M. Ryoshi
    Mitsubishi Electric TOKKI Systems, Amagasaki, Hyogo, Japan
 
  For the SuperKEKB project, a new LLRF control system has been developed to realize high accuracy and flexibility. It is an FPGA-based digital RF feedback control system using 16-bit ADC's, which works on the μTCA platform. In this μTCA-module, the Linux-OS runs then it performs as the EPICS-IOC. This LLRF system is available to both of normal-conducting cavity and super-conducting cavity. A prototype of the LLRF control system for the SuperKEKB was produced. The feedback control stability, temperature characteristics and cavity-tuner control performance are evaluated. The evaluation results and future issue for the operation will be presented in this report. The amplitude and phase stability in the feedback control is 0.03% and 0.02 degrees, respectively. It is sufficiently stable for the SuperKEKB. However, the temperature dependency is not small for the required stability. Its countermeasures are under consideration.