

IPAC-2011: ALBA Commissioning

Accelerator Division

ALBA Synchrotron Light Source Commissioning

D. Einfeld, CELLS-ALBA on behalf of the Commissioning Team

Dieter Einfeld, CELLS-ALBA

IPAC-2011: ALBA Commissioning

Accelerator Division

Contents 1.) The project ALBA 2.) Commissioning results 2a.) Linac 2b.) Booster Synchrotron 2c.) Storage Ring

Dieter Einfeld, CELLS-ALBA

The Project ALBA

Accelerator Division

Contents **2.) The project ALBA** 2.) Commissioning results 2a.) Linac 2b.) Booster Synchrotron 2c.) Storage Ring

Dieter Einfeld, CELLS-ALBA

The ALBA - Building

Accelerator Division

Dieter Einfeld, CELLS-ALBA

LINAC in the Tunnel

Accelerator Division

Dieter Einfeld, CELLS-ALBA

Lattice of Booster Synchrotron

Accelerator Division

Dieter Einfeld, CELLS-ALBA

Som bestern Lissie Facility

Storage Ring Lattice

Accelerator Division

Dieter Einfeld, CELLS-ALBA

BA

Girder of Matching Cell

Dieter Einfeld, CELLS-ALBA

RF-System

Accelerator Division

Dieter Einfeld, CELLS-ALBA

RF-System

Accelerator Division

Dieter Einfeld, CELLS-ALBA

Storage Ring in the Tunnel

Accelerator Division

Contents 1.) Introduction 2.) The project ALBA **3.) Commissioning results 3.) Linac** 3b.) Booster Synchrotron 3c.) Storage Ring

Dieter Einfeld, CELLS-ALBA

Linac Commissioning

All parameters are within specifications

Summary: Some specifications of the Linac are much better as given by the specifications (for example the emittance is by a factor 1.5 smaller). The Linac operation is very reliable for the different modes: long bunch, small bunch, single bunch, large charge (4 nC), small charge (0.5 nC), etc.

Dieter Einfeld, CELLS-ALBA

Booster Synchrotron Commissioning

Accelerator Division

Contents
1.) Introduction
2.) The project ALBA
3.) Commissioning results
3a.) Linac
3b.) Booster Synchrotron
3c.) Storage Ring

Dieter Einfeld, CELLS-ALBA

Booster Commissioning

- 22.12.2009, 3:00 first beam in the booster
- 1. Phase: 10th to 24th of January 2010 The goal was to cross check all the sub-systems. We reached a beam up to 600 MeV and later to 2.8 GeV
- 2. Phase: July 2010
 - We have had problems with the Linac, the booster power supplies and also the injection elements. No success and progress.
- 3.) Phase: September October 2010 We changed the philosophy: tunnel open in the morning for storage ring installation and tunnel closed in the afternoon for booster commissioning. We could characterize the booster and got a 3 GeV beam at the 4th October 2010.28th of October a beam of 3 GeV into the BTS transfer line

Disprsion Functions (DC)

Accelerator Division

Dieter Einfeld, CELLS-ALBA

 β -function (Tune = 12.271 / 7.356) 15 β_{χ} [meters] 10 5 Ο 50 100 150 200 \mathbf{O} 15 β_{y} [meters] 10 5 Ο о́ 50 100 150 200 Position [meters] Good agreement with the model

GDBetae Genfeld, CELLS-ALBA

Results of the ALBA Booster commissioning IPAC-2011, 5th September 2011 20

Accelerator

Division

Ramping: Tunes

4th October 2010: beam accelerated up to 3 GeV 7.5 12.6 ٥ 7.45 12.45 tune, 12.4 7.4 12.36 , Hereit 7.35 12.3 12.26 vert tune, Q 7.3 20 40 60 80 100 120 140 150 time, t [ms] 7.25 7.2 7.6 niadal culculs 7.15 adel settings σ rent. tune 7. 7.1 7.30 7.05 maaxumad 7.2 model outputs 7.2 model settings 7 🖻 7.2 L 12.2 12.3 horiz. ture, Q_y 12 12.1 12.4 12.5 20 40 60 80 100 120 140 150 time, t [ma]

- First beam to 3 GeV: injection on w.p. (12.42, 7.38)
- Large drop of Qx at the start due to nonlinear magnet calibration
- Vertical tune is flat: most of the vertical focusing is provided by the gradient bending

Ramping: Closed Orbit

Accelerator Division

Correcting the orbit while ramping

orbit corrected to ± 3 mm along the ramp

Dieter Einfeld, CELLS-ALBA

Dieter Einfeld, CELLS-ALBA

Booster Emittance

Accelerator Division

1st extracted Beam from the Booster Synchrotron, 28th of October 2010

File View Tau Tools Help

σ(x) = 0.86 mm, σ(y) = 0.19 mm ε(x) = 13 nmrad, ε(y) = 2,6 nmrad

We are 30 % off to the theoretical emittance and have a coupling factor of roughly 20%.

Dieter Einfeld, CELLS-ALBA

Storage Ring Commissioning

Contents
1.) Historical remarks
2.) The project ALBA
3.) Commissioning results
3a.) Linac
3b.) Booster Synchrotron
3c.) Storage Ring

Dieter Einfeld, CELLS-ALBA

IPAC-2011, 5th September 2011

Accelerator

Division

Dieter Einfeld, CELLS-ALBA

13th March, 9h38: 1 second stored beam

Dieter Einfeld, CELLS-ALBA

1st Accumulated Beam at ALBA

Accelerator Division

16th of March 2011: a historical day of the ALBA – project: the first accumulated beam at ALBA.

Dieter Einfeld, CELLS-ALBA

1st Accumulated Beam at ALBA

Accelerator Division

16th of March 2011: A historical day of the ALBA – project, The Accelerator Division is celebrating this success.

Dieter Einfeld, CELLS-ALBA

Beta-Functions of the SR

Accelerator Division

First measurements of beta function with LOCO: there is a asymmetry in the machine

Beta-Functions of the SR

Accelerator Division

Result: It looks much better, but there is still an asymmetry in the machine (vertical)

Dieter Einfeld, CELLS-ALBA

Accelerator Division

Once the MPS was operational...

		100.29	9 m A				
Life Time		Oh 06m Avg. Pressure (mbar)	Curr*LifeT I 11.5 I 7.34e-09 A				
	Friday	01-Apr-2011 18:25:28	E				
20 0 ****	99 ₁₇ 10		lev ourrent 00 0 m				

Dieter Einfeld, CELLS-ALBA

Accelerator Division

Normally working with (+2, +2)

Dieter Einfeld, CELLS-ALBA

13/

Symbrotron Light Facility

Beam Based Alignment

BBA : Results

Dieter Einfeld, CELLS-ALBA

IPAC-2011, 5th September 2011

Accelerator

Division

Orbit Correction

Accelerator Division

Raw orbit without correctors

Offsets of BBA included and RF frequency adjusted

Storage Ring Orbit (Difference from the Offset Orbit)

Dieter Einfeld, CELLS-ALBA

Orbit Correction: Reproducibility

Accelerator Division

Raw orbit with correctors

Tune during the commissioning:

Accelerator Division

Normally working with chromaticity: +2, +2

Dieter Einfeld, CELLS-ALBA

- 7 or 8 BPM/cell (120 BPMs): orbit control and interlock system
- Low-loss phase matched (<10deg) RF cables of wide variety of lengths [15m - 45m]

Final LOCO - Measurements

Accelerator Division

Horizontal Dispersion: the deviations to the model are +/- 5 mm. This is a good agreement.

Vertical Dispersion: +/- 15 mm the vertical dispersion is given by the cross talk of the BPM's. With the introduction to LOCO, it could be decreased to 1 mm

Dieter Einfeld, CELLS-ALBA

LOCO - Results

Dieter Einfeld, CELLS-ALBA

IPAC-2011, 5th September 2011

Accelerator

Division

Injection Efficiency

Dieter Einfeld, CELLS-ALBA

Beam Size / Emittance

Dieter Einfeld, CELLS-ALBA

IPAC-2011, 5th September 2011

Accelerator

Division

Three insertion devices have been installed and closed:

- ≻ EU62
- ≻ EU71
- ➤ MPW80

Without much influence in the machine:

MPW80 - BL22	Gap (mm)	tunes	RMS Orbit Distortion (um)	tunes change (10^-3)
OPEN	275	0.229, 0.375	0,0	
1/2 CLOSED	50		11 , 57	
CLOSED	12.7	0.229 , 0.377	13 , 9	0,2
OPEN	275	0.229 , 0.376	14 , 14	0 , 1

EU71 - BL29	Gap (mm)	Phase (um)	tunes	RMS Orbit (um)	tunes change (10^-3)
OPEN	273	0	0.229, 0.376	0,0	
HORIZONTAL (0)	15.5	0	0.230, 0.376	15, 14	+1 , 0
CIRCULAR (pi/2)	15.5	21181	0.228, 0.377	15, 14	-1, +1
VERTICAL (pi)	15.5	35650	0.228, 0.377	16, 15	-1, +1
CIRCULAR (-pi/2)	15.5	-21181	0.228, 0.377	15 , 15	-1, +1
VERTICAL (-pi)	15.5	-35650	0.228, 0.377	16 , 15	-1 , +1
OPEN	273	0	0.229, 0.376	15,16	0,0

Dieter Einfeld, CELLS-ALBA

Accelerator Division

Dieter Einfeld, CELLS-ALBA

Streak Camera

Accelerator Division

Visible Radiation from a dipole is extracted using a mirror
Mirror position (in-vacuum) controlled with thermocouples

Example: Bunch Length Measurement

Bunch length vs. RF voltage

Dieter Einfeld, CELLS-ALBA

7th of June: 170 mA at ALBA

Accelerator Division

CURRENT 170.010 mA

SR Commisioning. Max Current 1

The commissioning could only be done with 3 to 4 cavities with a maximum current of 200 mA

IPAC-2011, 5th September 2011

Dieter Einfeld, CELLS-ALBA

7th of June: 170 mA at ALBA

Accelerator Division

Dieter Einfeld, CELLS-ALBA

13/

Symbrotron Light Facility

0

Vacuum System Commissioning

Accelerator Division

- Average pressure without beam = <u>4·10⁻¹⁰ mbar.</u>
- With 4.5 A.h. dose, the average pressure was <u>3.2.10⁻⁹ mbar</u> with 80 mA of beam current (multi-bunch filling mode).
- Vacuum Clean-up rate estimated 0.68.

Photon-stimulated desorption yield (PSD) vs. beam dose.

Average pressure normalized to current vs. beam dose

Dieter Einfeld, CELLS-ALBA

Summary of Measurements

≻ Tune

- > Chromaticity
- Beam Based Alignment
- Orbit correction, including frequency adjustment
- LOCO measurements:
 - Beta functions, dispersion and beating correction
- Beam size, emittance
- Bunch length
- Vacuum performance
- Closing IDs
- Slow orbit correction system

(Most of these measurements were done with <u>10~20 mA</u>)

Thank you very much

Accelerator Division

This was not only a success from the commissioning team, it was a success of the whole CELLS staff

The machine is ready to serve as a source

for the experiments

Dieter Einfeld, CELLS-ALBA

[1] M.Pont et al., "Operation of the ALBA injector", [2] G. Benedetti et al., "Modeling Results of the ALBA [3] M. Munoz et al., "Orbit Studies during ALBA [4] G. Benedetti et al., "LOCO in the ALBA Storage [5] F. Perez et al., "Commissioning of the ALBA Storage Ring RF Systems" [6] B. Bravo et al., "CaCo: A Cavity Combiner for IOTs Amplifier" [7] M. Pont et al., "Septum and Kicker Magnets for the ALBA", [8] J. Campmany et al., "Performance of ID at ALBA", [9] T.F. Guenzel, "Transverse Instability Studies at the ALBA Storage Ring" [10] T.F. Guenzel, "Longit. Beam Stability and related Effects at the ALBA" [11] E. Al-Dmour et. al, "ALBA storage ring vacuum system commissioning" [12] J. Marcos et al, "Front Ends at ALBA"