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Abstract
The lattice of the Non Scaling FFAG EMMA has four

degrees of freedom (strengths and transverse positions of
each of the two quadrupoles in each periodic cell). Dy-
namical maps computed from an analytical representation
of the magnetic field may be used to predict the beam dy-
namics in any configuration of the lattice. An interpolation
technique using a mixed variable generating function rep-
resentation for the map provides an efficient way to gen-
erate the map for any required lattice configuration, while
ensuring symplecticity of the map. The interpolation tech-
nique is used in an optimisation routine, to identify the
lattice configuration most closely machine specified dy-
namical properties, including the variation of time of flight
with beam energy (a key characteristic for acceleration in
EMMA).

INTRODUCTION

In EMMA [1], a highly compact doublet cell is achieved
using short quadrupole magnets. A large aperture require-
ment then leads to potentially significant fringe fields. Ac-
curate simulations of the beam dynamics in EMMA require
a dense description of the magnetic field, and numerous in-
tegration steps. Solving Maxwell’s equations in an EMMA
cell (by a Finite Element code, OPERA [2]) we have gener-
ated a 3D magnetic field map that can be used for numerical
tracking in EMMA [3]. In most cases, numerical tracking
routines are fast and reliable. However, an alternative ap-
proach based on dynamical maps could provide some ben-
efits, particularly where speed is important; for example,
when tracking a large number of particles through many
cells. Dynamical maps also provide the possibility of read-
ing significant quantities (such as tunes and chromaticities)
directly from the map, giving an insight into the dynamics
that is not provided directly by purely numerical methods.

To generate a dynamical map, one propagates a variable
through the cell as a function instead of a numerical value.
The magnetic field must be expressed in analytical form:
an appropriate form can be obtained from a numerical field
map by fitting an appropriate three-dimensional mode ex-
pansion [4]. Then, we use a symplectic integrator [6] im-
plemented in the differential algebra (DA) code COSY [7],
to propagate a vector of six power series (one series for
each of the six dynamical variables) through the field.
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DYNAMICAL MAPS CONSTRUCTION

During the commissioning of the machine a real-time
simulation of the effect of a change in the lattice config-
uration is extremely useful. When using a hard edge model
for the magnets, it is trivial to study any lattice by directly
adjusting the parameters and performing the tracking study.
The use of a field map is of a significant improvement in the
lattice description; but then, in principle, a different field
map is needed for each configuration. This would mean
that an accurate OPERA model would have to be solved
for each new lattice, requiring considerable computer time.
Using the superposition of the fields generated by the mag-
nets, taking into account the presence of the other magnet
[3], the construction of the field map for any given machine
configuration (specified by particular values of the magnet
strengths and positions) can be performed easily. However,
the dynamical properties of the lattice need to be deter-
mined either by particle tracking, or by construction of a
dynamical map. In either case, the necessary computations
are not particularly lengthy, but still take some minutes to
perform.

In the case of numerical tracking, little can be done to
make the process more efficient. The only way to deter-
mine properties such as the tunes and time of flight (tof), is
to carry out numerical integration of the equations of mo-
tion for each new lattice configuration. However, when us-
ing dynamical maps, we can consider constructing a grid of
“reference” maps, corresponding to a set of lattice configu-
rations; we can then obtain the dynamical map for any de-
sired new configuration by interpolation between the refer-
ence maps. The interpolation can be performed essentially
instantly, and the dynamical properties of the new configu-
ration can be obtained immediately from the map, without
the need for any tracking.

For the interpolation method itself, there are at least two
possible approaches. The most simple and direct is to inter-
polate the individual coefficients of the Taylor map. How-
ever, without any explicit constraint, the precise relation-
ship between the coefficients that ensures the symplectic-
ity of the map is lost in the interpolation: the result is a
map with potentially a large symplectic error. We have
found that this technique produces maps that not only have
a large symplectic error, but that are also very unreliable
in their prediction for the dynamical properties of differ-
ent lattices. One possible reason for this, is that the overall
accuracy of the interpolated map decreases with the num-
ber of quantities being interpolated; in the case of a high-
order Taylor map for six dynamical variables, the number
of interpolated quantities (power series coefficients) can be
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extremely large.
Using COSY, it is possible to construct a mixed vari-

able generating function (MVGF) that reproduces any dy-
namical map symplectic to order n from the map expressed
in the form of a Taylor series [7]. A MVGF is not in ex-
plicit form (i.e. it cannot be used directly for particle track-
ing); however a map represented in the form of a MVGF
is necessarily symplectic. The interpolation is performed
on the MVGFs; the interpolated map can then readily be
converted back into Taylor form using a DA code (such as
COSY), by “solving” the map represented by the MVGF,
using DA variables to represent the dynamical variables.

In our investigations, we used a grid of 300 reference
lattices (i.e. 300 different lattice configurations). Finding
the closed orbit and tof by numerical integration in PyZ-
goubi [5] for 300 reference lattices, at nine different ener-
gies, takes a little over 4 hours. Constructing the dynami-
cal maps for the same configurations takes about 5 hours;
dynamical properties such as the closed orbit and tof can
then be obtained for the full set of configurations in less
than a minute. In this respect, it appears that the com-
putational time required for the dynamical map approach
is longer than that for numerical integration, for the same
task. However, to compute the tof at an additional refer-
ence energy (for example) will take only a few seconds
using the dynamical maps, whereas an additional half an
hour would be needed using PyZgoubi. Furthermore, com-
puting additional dynamical quantities, such as the beta-
tron tunes, would require several hours more computation
time in PyZgoubi, whereas the same information can be
directly extracted from the dynamical maps already com-
puted, within a few seconds.

COMPARISON WITH EXPERIMENTS

Experiments were performed using a fixed injection
energy of 12 MeV. The dynamical properties of the lat-
tice at other energies were studied by varying the magnet
strengths: reducing the magnet strengths by 10% for ex-
ample, gave the same behaviour as would be achieved by
increasing the beam energy by 10%.

We specify the lattice configuration by giving the magnet
strengths relative to the baseline lattice, and the absolute
magnet positions. Thus, the lattice used for the measure-
ments reported here had the horizontal focusing quad in
each cell at 105.6% of nominal strength, the horizontally
defocusing quad at 100% of nominal strength, and these
magnets at positions 9.51 mm and 36.05 mm (with respect
to nominal zero positions), respectively. This lattice, which
we refer to as the E1 lattice, is then specified by the nota-
tion (105.6, 100, 9.51, 36.05). Note that the baseline lattice
from Berg [1] is (100, 100, 7.51, 34.05); hence in the E 1

lattice magnets are moved 2 mm outwards.
A dynamical map for the E1 lattice was constructed us-

ing MVGF interpolation. Fig. 1 shows the comparison be-
tween measurements and simulations of the tof variation
with energy for this lattice configuration. We observe that
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Figure 1: Comparison between measurements and simula-
tions of the tof variation with energy for the baseline E1

lattice configuration.
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Figure 2: From the tof measurements (blue stars with er-
ror bars) four constraints (green triangles) are defined for
the optimisation routine used to find a model lattice con-
figuration with the same dynamical behaviour as observed
in the machine. The tof for energies between 10 MeV and
20 MeV is then computed for the lattice found by the opti-
misation routine (red dashed line).

the measured lattice has a minimum tof of 55.275ns at
15 MeV (“equivalent energy”) whereas the simulated lat-
tice has a minimum tof of 55.225ns at 17 MeV. There is
clearly some significant difference between the machine
and the model.

To investigate the difference between the model and the
machine, the grid of lattice configurations was used to find
a model that corresponded to the measurements. To do this,
an optimisation routine was used to look for the model lat-
tice configuration that most closely matched the measured
tof curve. For each lattice configuration of the grid, we use
the dynamical map to compute the tof on the closed orbit
from 10 MeV to 18 MeV. Once the configuration parame-
ters for the lattice best fitting the tof curve had been found,
the dynamical map was constructed by interpolation of the
MVGF.

Fig. 2 shows a comparison between measurements and
simulations from the lattice configuration found by the op-
timisation routine. The fitted lattice found by the optimisa-
tion routine, which we refer to as S1, has parameters (in the
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Figure 3: Comparing experimental measurements with
simulation results, we observe that for lattices 1, 2 and 3,
the agreement in the tof is mostly within 20 ps.

same notation used above for E1): (94.30, 100.02, 11.56,
34.00). The times of flight for closed orbits in the energy
range between 10 MeV and 20 MeV were computed for this
lattice (red dashed line). It shows good agreement with
measurements with a maximum discrepancy of about 20 ps
at 10.5 MeV. All the other measurements agree within less
than 10 ps.

When varying slightly the target values in the optimisa-
tion routine, it was possible to find lattices different from
S1 that still match relatively well the tof variation with en-
ergy. We note that the tof mainly depends on the mag-
net position, and has a weaker dependence on the magnet
strengths. The magnet strengths can then be adjusted to
agree with the tune measurements, while still matching the
tof constraints. In other words a new constraint on the value
of (for example) the vertical tune at high energy could be
implemented in the routine. The new lattice found would
correspond better to the experimental lattice. This is a pos-
sible topic for a further study.

The simulation lattice S1 that matches the tof measure-
ments has significantly different configuration parameters
compared to the experimental lattice E1. Although simu-
lations and measurements do not agree in absolute terms,
it is interesting to compare the response to changes in the
lattice predicted by the model with the response to changes
measured in the machine. To do so, we measured the tof
for various energies for three transverse positions of both
magnets: both moved 1 mm outward (lattice E2, +1 mm
offset), both in nominal position (lattice E3, 0 mm offset)
and 1 mm inward (lattice E4, -1 mm offset). The magnet
strengths are kept constant; for instance, the lattice E2 is
(105.6, 100, 8.51, 35.048). The tof measurements for these
lattices are represented by stars with error bars in Fig. 3. We
then apply the corresponding moves of the magnets to the
lattice S1 and obtain the lattices S2, S3 and S4; for instance
lattice S2 is (94.30, 100.02, 10.56, 33.00). For each cor-
responding position of the magnets, the experimental and
simulated results are plotted in the same colour.

For these simulated lattices, the tof at different energies
is calculated in two different ways. The dots on the dashed
line are values interpolated directly from the tof grid, hence
limited to 18 MeV. The continuous line is obtained by inter-
polating the generating function for the corresponding lat-
tice from the dynamical map grid. The lattice S4 is found
to be outside the grid (Xd < 32) and while the tof could be
extrapolated, the generating function could not be derived.
For the three other configurations, the generating functions
agree extremely well with the interpolated tof.

We observe that for lattices 1, 2 and 3, the agreement
between measurement and simulation is within 20 ps, apart
from some specific measurements (for which the actual ki-
netic energy of the injected might not have been exactly
12 MeV, because of rf phase jitter and electron gun insta-
bilities in ALICE). The discrepancy for the fourth lattice
is larger and can be explained by the fact the configuration
is outside the grid, hence the simulated data were extrapo-
lated. However there is agreement on the minimum value
of 55.22 ns between 14 MeV and 15 MeV; this value is im-
portant to determine the optimal rf frequency of the cavity
to achieve acceleration.

SUMMARY AND CONCLUSIONS

The use of dynamical maps enables the development of
an efficient tool for exploring the effects of changing the
lattice configuration, including the fitting of a model of a
lattice to experimental measurements. The dynamical map
for any desired lattice configuration in EMMA can be ob-
tained by interpolation on a grid of reference lattices. Bas-
ing the interpolation on mixed variable generating func-
tions ensures the symplecticity of the interpolated map, and
also appears to improve the accuracy of the map.

There appear to be significant differences between the
lattice configuration used in the machine, and the lattice
configuration in the model that most closely reproduces the
experimental data. The reasons for these differences are not
yet fully understood. However, in the cases we have looked
at, we have been able to used the “fitted” model to predict
the effect of changes in lattice configuration on the beam
behaviour. This is an important capability in optimising
machine performance, for example in adjusting the time of
flight curve for maximising acceleration.
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