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Abstract

This approach based on the matrix formalism for Lie al-
gebraic tools provides a constructive method for a beam
propagator in magnetic and electrical fields. The beam
propagator is evaluated in according to the well known Lie
algebraic tools. But in contrast to traditional approaches
matrix presentation for Lie propagators bases on two di-
mensional matrices.

INTRODUCTION

High-energy and nuclear physics using accelerators has
reached a point where a very large fraction of the experi-
ments require polarized beams. One of the the greatest tri-
umph is the recent successful installation and commission-
ing of ’Siberian Snakes’ and spin rotators at RHIC,the Rel-
ativistic Heavy-Ion Collider at BNL. RHIC is the world’s
first polarized proton collider. There are several ongoing
works for creation different types of accelerators with po-
larized beams usage (for example NICA machine JINR,
Dubna, Russia). The spin program is an important and in-
tegral part also for the NICA project. Indeed, ever since the
“spin crisis” of 1987, the composition of the nucleons spin
in terms of the fundamental constituents - quarks and glu-
ons - remains in the focus of attention of many physicists.
This section contains the discussion of the physics goals
and perspectives of the spin program at NICA. The high-
lights of the NICA spin program include the measurements
of Drell-Yan processes with longitudinally polarized pro-
ton and deuteron beams, spin effects in the inclusive and
exclusive production of baryons, light and heavy mesons
and direct photons, and the studies of helicity amplitudes
and double spin asymmetries in elastic scattering. This sec-
tion also addresses the issue of the competitiveness of the
NICA spin program - it appears that the SPD detector at
NICA would allow to contribute significantly to the current
and planned international program in spin physics.

EQUATIONS

In general case particle motion equations

dX/dt = F(X, t) =

∞
∑

k=1

P
1k
X

[k] (1)

can be presented using so called matrix formalism for dif-
ferential equations [1]. The solution of Eq. 1 can be written
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in the following form

X(t) =

∞
∑

k=1

R
1k(t|t0)X0

[k], X0 = X(t0),

whereX0

[k] is so called Kronecker power ofk-the order of
the initial phase vectorX0.

The matricesR1k(t|t0) can be evaluated using the matrix
formalism for Lie algebraic tools [1]. In linear approxima-
tion one obtains well known linear solution

X = R
11(t|t0)X0,X0 = X(t0).

The vector of spin componentsS changes with the
time t of the laboratory frame according to the Thomas-
Bargmann-Michael-Teledi (T-BMT) equation (see i.e. [2]).
The spin precession equation can be written in two follow-
ing forms

dS

dt
= Ws × S = W · S,

whereW is a skew-symmetric matrix

Ws =





w1

w2

w3



 and W =





0 −w3 w2

w3 0 −w1

−w2 w1 0



 .

We have to understand thatWs depends of the particle
position in phase spaceWs = Ws(X) and lose some ad-
vantages of matrix formalism representation. However we
can courageously build it in linear approach. In introduc-
tion we already mentioned about EDM-machine which will
have only electrostatic elements. But in this paper neglect
the electric fields (do’nt generality) and leave only compo-
nents of magnetic fieldB. It is used to work in accelerator
coordinate system and all differentiation are by the inde-
pendent variables measured along a reference orbit. The
process of converting the spin precession equation to ac-
celerator coordinates described as well in [2, 3]. In this
coordinate system one can write

Ws = −
e

pc
(1+hx)

[

(aγ+1)(Bxe1+Bse2+Bye3)−

−
aγ2β2

γ + 1

Bxx
′ +Bs(1 + h) +Byy

′

(1 + hx)2 + x′2 + y′2
×

× (x′
e1 + (1 + hx)e2 + y′e3)

]

(2)
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This expression can be used for evaluation of compo-
nents for the matrixW. For example, for the elementw1

one can write

w1 = −
e

pc
(1 + hx)(aγ + 1)Bx−

−
aγ2β2

γ + 1

Bxx
′ +Bs(1 + h) +Byy

′

(1 + hx)2 + x′2 + y′2
y′2x′ (3)

The equalities (2) and (4) are used for forming our skew-
symmetric matrixW.

So, combining the motion equation for particles phase
coordinates and spin components one can write the full mo-
tion equations system for space phase vectorX and spin
vectorS in the following form

dX

dt
=

∞
∑

k=1

P
1k
X

[k],

dS

ds
= W(X) · S.

(4)

It should be note that the spin part of this system is linear by
spin, but the matrixW is a function of phase space vector
X. This dependence leads us to necessity usage of special
methods for evaluation of our equation system (4).

SPIN-MATCHED SYSTEM EVALUATING

TheX-dependence of the matrixW leads us to neces-
sity to use some special methods for solution our problem.
This problem reminds the well known problem of solution
of self-consistent equations (see i. e. [1]). Similar to this
problem we call the system (4) “self-spin matched” system.
Introduce for more usability functionFspin = W(X) · S.
For the solution of this system we realize the next two steps.

At first, according to the paper [4] we should introduce
the time-average spin vector〈S(X, s)〉T in according to the
following equality

〈S(X, s)〉T = lim
T→∞

1

T

T
∫

0

S(X, s)ds,

For the next we also introduce the ensemble-average spin-
vector in according to the following equality

〈S(X, s)〉M =
1

mes(M)

∫

M

S(X, s)dX,

whereM is the space phase set occupied by beam particles
andmes(M) is its measure. It is not difficult to show that
our dynamical system (4) is a ergodic system. It is known
that for similar system it is true the following equality

〈S(X, s)〉T = 〈S(X, s)〉M. (5)

This equality allows us to use the approach described in the
book [1].

In according to this approach one should change the right
part of the second equation of Eq. 4 by the following equa-
tion:

d〈S〉
M
(s)

ds
= 〈W〉M · 〈S〉M(s), (6)

where〈S(s)〉
M

means that distribution function of parti-
cles spin includes inFspin by integral way and integrating
are byM = M(s).

Let us introduce an operator and a function in according
to the following rules: an evolution operator

M(s|s0) : S(s0) → S(s)

and the function

F
spin = 〈W〉M · 〈S〉M(s).

These operator and function allows us to write the fol-
lowing equation

dM(s, s0,V)

ds
= V ◦M(s, s0,V),

where

V = F
spin ∂

∂s
.

and initial state condition is

M(s, s0,V) = Id,

whereId is an identity operator. In according to [1] we can
write the following algorithm for solution of our problem

It can be matched an integral equation in Volterr-Urison
form. Write this equation in formal form

M = A ◦M, (7)

whereA – Urison’s operator. The main seal of solution
existence of Eq. 7 is the method of successive approxima-
tions which helps to find out the existence of stable point
of operatorA. In other words has to be build a sequence
Mk = A ◦ Mk−1 by some initial valueM0 then proof
a convergence ofMk to someM∗ and there is the parity
M∗ = A ◦M∗.

Lets consider the general aspects of building a solution
for Eq. 7 for motion with spin adjusted system (Eq. 4).

• Step 0. First of all set an interval for a solution[s0, s1],
∆s = s1−s0. For the interval[s0, s1] define a system
of transportation thereforeX – a component ofFspin

function.

• Step 1. Then choose the distribution function
S(X(t), s0) = S0(X) see [1, 4].

• Step 2. Calculate the evolution operator
M : M0 = M(s|s0,V , s ∈ [s0, s1].
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• Step 3. Evaluate the current value of distribution
functionS1(X, s) = S0((M

0)−1 ◦X0).

• Step 4. Solve corresponding spin equations with
distributing functionS1(X, s) and retrieveS1.

• Step 5. Evaluate functionFspin = F
spin(S,X, s).

• Step 6. One can solve the Eq. 7 and define
M1 = A ◦M0.

• Step 7. Retrieve a new value for〈f(X, t0)〉
1
M

uses for-
mula

〈S(X, s0)〉
1
M1

= (1− α)〈S0((M
′)−1 ◦X0)〉M0

+

+ α〈S0((M
∞)−1 ◦X0)〉M0

(8)

and0 < α < 1.

• Step 8. Checking the specific criterion

||Mk −A ◦Mk−1|| < ε, k ≥ 1. (9)

If Eq. 9 is true the process of determinationM on the in-
terval[t0, t1] finished. But if the condition of (9) is false the
process repeating from step four with corresponding func-
tions and operators redefinition.

Treat the Eq. 8 in general form matches for any step

〈S(X, s0)〉
k
M1

=

= (1− α)〈S0((M
‖−∞)−1 ◦X0)〉M0

+

+ α〈S0((M
‖−∞)−1 ◦X0)〉M0

, (10)

and0 < α < 1, Mk = A ◦ Mk−1. This algorithm is
different from some authors uses. Furthermore in most pa-
pers there are no studying a convergence problem except
numerical algorithm examination.

CONCLUSION

This approach permit to apply all of matrix algebra op-
portunities and advantages in contrast with the tensor pre-
sentation based on multi-indexes description. The neces-
sary computation can be realized in symbolic (using com-
puter algebra codes as Mathematica, Mapple, Maxima and
so on). The corresponding symbolic objects itself can be
stored in special databases and used then in numerical com-
puting. Parallel and distributed conception is well accept-
able with the suggested matrix formalism.
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