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Abstract

In traditional approach, the Vlasov equation is consid-
ered as integro-differential equation with nonlinear term
accounting for the electromagnetic interaction. That for-
mulation includes partial derivatives on phase coordinates.

According to the covariant approach, physical relations
should be presented by tensor equations. The main feature
of the covariance is that any tensor equation can be written
without using of coordinates.

In covariant formulation of the Vlasov equation, we use
such tensor objects as Lie derivatives. Classical and rela-
tivistic cases are described similarly. A difference between
these two cases appears only in form of particle motion
equations.

Another feature of presented approach is consideration
of degenerate distributions in the phase space. By degener-
ate distribution we mean a distribution which have support
of dimension smaller than dimension of the phase space.
The simplest case of degenerate distribution is the distri-
bution described by the Dirac measure. Another exam-
ple is the Kapchinsky-Vladimirsky distribution, when par-
ticles are distributed on the 3-dimensional surface in the
4-dimensional phase space.

Presented results can be applied for description and sim-
ulation of charge particle distributions for high-intensity
beam.

PHASE SPACE

Consider a domainD in 4-dimensional spacetime and
an observer which can measure time of each event inD :
t(x), x ∈ D. ThenD can be represented as union of dis-
joint layers corresponding to various values oft. Let’s call
such layers the layers, or spaces, of simultaneous events.
In classical theory, each such layer is the same for differ-
ent observers. Assume thatt(x) is continuous mapping and
the spaces of simultaneous events can be described as sur-
faces of classC1 in some system of coordinates with slowly
varying coordinates [1].

Let us call an observer and a system of mapping of cor-
responding layers of simultaneous events to some selected
layer the reference frame. The selelected layer of simul-
taneous space is called the configuration space associated
with the reference frame [1].

When time passes, particles move from one layer of
simultaneous events to another, but we can examine dy-
namics of particle ensemble in 3-dimensional configuration
space of some frame of reference.

Let us consider the 6-dimensional tangent bundle of the
configuration space as the phase space. Denote byx a po-

sition in the configuration space, and byq a position in the
phase space. Assume that coordinates in the phase space
can be chosen so that the first 3 coordinates coincide with
the coordinates in the configuration space, and that the rest
3 coordinates allow us to find the velocity vector in the con-
figuration space:

dx

dt
= V (x1, x2, x3, q4, q5, q6).

Though we use the reference frame, the proposed ap-
proach is fully covariant as we can consider instead of
system of layers of simultaneous events every system of
smooth timelike surfaces filling the domainD, introduce
their continuous parametrization and system of their map-
ping to some selected surface, and consider particle dynam-
ics in the tangent bundle of that surface.

PARTICLE DISTRIBUTION DENSITY

We shall consider various types of distributions, which
will be described on the basis of the common approach.

In the simplest case, assume that we deal with continuos
charged media occupying a domainG0 in the phase space
instead of set of discrete particles. Consider a family of
subdomains{G}, G ⊂ G0, with smooth boundaries for
which their characteristic functions are defined:

χG(q) =

{

1, q ∈ G
0, q /∈ G.

Let us call differential form of 6-th degree

n = n123456(t, q)dx
1 ∧ dx2 ∧ dx3 ∧ dq4 ∧ dq5 ∧ dq6, (1)

the particle density distribution in the phase space (or phase
density) if for each subdomainG

∫

G0

χG(q)n(q) = NG. (2)

HereNG is the number of particles inG, which in this
model may be not integer. For simplicity, assume thatn =
n123456(t, q) is continuously differentiable. Cases of piece-
wise continuous and piece-wise differentiable component
can be considered analogously.

Consider the space of functionsf(q) for which
∫

G
f(q)ω(q) exists for any form of 6-th degreeω(q) from

given class. Let us call such functions integrable and de-
note byF their space. For some formω(q), define a linear
functional onF by the rule

< ω, f >=

∫

G0

f(q)ω(q), f ∈ F . (3)
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Then definition (2) can be written as

< n, χ >= NG. (4)

Let us consider now the discrete model of point-like par-
ticles. In the frames of this model each particle is repre-
sented by a point in the phase space. Let us introduce the
linear functionalδ(q) onF :

< δ(q), f >= f(q), f ∈ F . (5)

As the measureµD =< δ(q), χD > is called the Dirac
measure, let us call the functional (5) the density of the
Dirac measure. The space of such functionals is linear,
their linear combination being

<
∑

i

αiδ(q(i)), f >=
∑

i

αif(q(i)).

For the model of point-like particles, let us call a linear
combination of functionals (5), such that for each subdo-
mainG the equality (4) holds, the phase density. It is easy
to see that in this caseαi = 1, andq(i) are particle positions
in the phase space,i = 1, N whereN is the total number
of particles:

n(q) =
N
∑

i=1

δ(q(i)). (6)

In this case, the density (6) is described by a scalar func-
tion, which is a differential form of0 degree.

Consider also the model that can be regarded as inter-
mediate case between the model on continuous media and
the model of point-like particles. Assume that particles are
continuously distributed on some oriented surfaceS in the
domainG0. The Kapchinsky-Vladimirsky distribution and
the Brillouin flow are examples of such distributions. We
shall describe distribution density in this case by a differ-
ential form ofm-degree defined on the surface. This form
depends on orientation of the surface, which is given by a
set ofn − m vectors: a change of the orientation can re-
sult in change of the form component sign. Assume for
simplicity that form components are continuously differen-
tiable functions of coordinates on the surface.

A form of m-degreeσ(q) defined on am-dimensional
oriented surface set a functional onF :

< σ(q), f >=

∫

S

f(q)σ(q).

In this case, call such form

n(q) = σ(q), (7)

that the condition (4) holds, the phase density.

THE VLASOV EQUATION

According to Vlasov, assume that particle dynamics is
determined by an external electromagnetic field and by the

self electromagnetic field, which is created by the media
being used as the model of a particle ensemble. For contin-
uous models (1), (7), we assume that particle density has
sufficiently small components to neglect the collision inte-
gral.

The particle dynamics equations define vector fieldw
in the domainD0 of the phase space. If right hand sides
of the dynamics equations are continuously differentiable,
then there exist integral lines, unique for each point and
each instance of time. Time can be taken as a parameter
for integral lines. In the simple case, when the phase space
is associated with an inertial frame, the dynamics equations
take the form

dx

dt
= v, (8)

m

3
∑

i=1

gik(
d

dt
γv)i = eEk + e

3
∑

i=1

Bkiv
i, k = 1, 2, 3. (9)

Heree andm are charge and mass of a particle,γ is reduced
energy (in nonrelativistic caseγ = 1), gik are components
of the metric tensor. In nonrelativistic case, metric tensor
is defined in the configuration space. In relativistic case,
g00 = 1, g0i = 0, i = 1, 2, 3, so that components of co-
variant derivation of the velocity vector in left hand side of
(9) contains Christoffel symbols only with spatial indices.
E is the first degree form of the electric field intensity and
B is the second degree form of the magnetic flux density.

Let us consider Lie draggingFw, δλ along vector field
w, which maps each pointq to point shifted along inte-
gral line by parameter incrementδt. It induces a coordinate
transform, which can be considered as shift of coordinate
system: for every pointq we take as its coordinates coor-
dinates of its preimage at Lie dragging [2]. Then Lie drag-
ging Fw, δtT of tensorT can be defined as follows: com-
ponents ofFw, δtT in shifted coordinates are equal to cor-
responding components of tensorT in initial coordinates.
Lie derivative of tensor fieldT along vector fieldw can be
defined as

LwT = lim
δt→0

T − Fw, δtT

δt
, (10)

if the limit exists.
For differential form ofp degree, which is covariant ten-

sor, the components of Lie derivatives are equal

(LwT )i1...ip =
∂Ti1...ip

∂qk
wk +

∂wj

∂qi1
· Tj i2...ip + . . .

. . .+
∂wj

∂qip
· Ti1...ip−1 j , (11)

Consider the equation for density distribution form. It is
easy to see that dimension of the distribution supporter does
not change, because dragged basis vectors can be use as
basis vector in dragged point. Assume that particles don’t
arise or destroy. Then integrating on each domain of the
phase space or surface where particles are located gives the
same result as integration on dragged domain or surface. It
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means, in accordance with definition of Lie dragging, that
evolution of particle density form can be described as Lie
dragging of the density form along vector fieldw, which is
defined by the dynamics equations:

n(t+ δt, Fw, δtq) = Fw, δtn(t, q). (12)

We shall call this equation covariant form of the Vlasov
equation.

How does density form change in the given point of the
phase space? In the case when distribution is described by
the form of 6 degree with continuously differentiable com-
ponents or when degree of the density form less then 6,
but the surface where particles are located does not change,
one can write equation with partial derivatives for the den-
sity form. Let phase density form is equal ton(t, q) at
some instancet in a point q. Then it will be equal to
n(t + δt, q) = Fw ,δtn(t, Fw ,−δtq) at instancet + δt, as
it changes according to the equation (12). Introducing the
form derivative on a parameter as form which component
are derivatives of corresponding components on this pa-
rameter, we obtain the Vlasov equation in the form

∂n

∂t
= lim

δt→0

n(t+ δt, q)− n(t, q)

δt
= −Lwn(t, q). (13)

As a simple example, consider an ensemble of non-
relativistic particles, which dynamics is described by the
equations (8), (9),γ = 1, and the particles distribution
is described by the form of 6 degree. Take spatial Carte-
sian coordinates and corresponding components of velocity
qi+3 = vi, i = 1, 2, 3 as coordinates in phase space.

According to (9), force components don’t depend on cor-
responding components of velocity. Then in right hand side
of (11) we should take only first term, and the Vlasov equa-
tion takes the form

∂ñ

∂t
+

3
∑

i=1

vi
∂ñ

∂xi
+

3
∑

i=1

e

m
(Ei + e

3
∑

i=1

Bijv
j)

∂ñ

∂vi
= 0.

Hereñ denotes corresponding component of the phase den-
sity n.

Calculation of the self electromagnetic field can be car-
ried out by various ways. For example, for distribution (6)
field can be calculated as superposition of the fields of mov-
ing charged particles.

In general, self electromagnetic field can be found as a
solution for the Maxwell equations, which contain in non-
relativistic case the charge density and the current density
forms and in relativistic case the current density form of 3
degree.

For distributions (7) description of the charge density
and the current density can require introducing function-
als analogous to functionals introduced for description of
the phase density. Nevertheless, for some cases, e.g. KV
distribution, we can do without new functionals.

Assume that current density form has smooth compo-
nents. Then we can construct mapping which transforms

the phase density form to the current density form. For ex-
ample, when the phase density is described by the expres-
sion (1), it can be shown that components of the current
density are

Jx1,x2,x3(t, x) =

∫

D(x)

n123456(t, q)dq
4 ∧ dq5 ∧ dq6,

Jt,x1,x2(t, x) =

∫

D(x)

n123456(t, q)
dx3

dt
dq4 ∧ dq5 ∧ dq6,

Jt,x1,x3(t, x) =

∫

D(x)

n123456(t, q)
dx2

dt
dq4 ∧ dq5 ∧ dq6,

Jt,x2,x3(t, x) =

∫

D(x)

n123456(t, q)
dx1

dt
dq4 ∧ dq5 ∧ dq6.

HereD(x) denotes the set of admissible values of the phase
coordinatesq4, q5, q6 in the pointx of the configuration
space.

CONCLUSION

Covariant form of the Vlasov equation (12) is presented.
All kinds of distributions are described by differential
forms of various degrees. For all of them, distribution den-
sity is defined by the equality (4) and satisfies the covariant
equation (12). The equation (12) contains tensor objects
— distribution density form and Lie dragging,t being a
parameter. Instead of timet we can take any parameter
for the set of timelike surfaces filling some domain in the
space-time.

Such approach can be applied also to the Liouville equa-
tion, which can be consider as the partial case when inter-
action is neglected.
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