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Abstract

A dedicated computer code, CSRZ, has been devel-
oped to calculate the coherent synchrotron radiation (CSR)
impedance for an ultrarelativistic beam moving in a curved
trajectory. Following the pioneering work of T. Agoh and
K. Yokoya [1], the code solves the parabolic equation in the
frequency domain in a curvilinear coordinate system. The
beam is assumed to move along a vacuum chamber which
has a uniform rectangular cross section but with variable
bending radius. Using this code, we did investigations in
calculating the longitudinal CSR impedance of a single and
a series of bending magnets. The calculation results indi-
cate that the shielding effect due to outer chamber wall can
be well explained by a simple optical approximation model
at high frequencies. The CSR fields reflected by the outer
wall may interfere with each other in a long bending mag-
net and lead to sharp narrow peaks in the CSR impedance.

INTRODUCTION

CSR has been studied extensively in the literature (for in-
stances, see Refs. [2]-[9]). We follow Agoh and Yokoya’s
method [1] to calculate CSR generated by a beam moving
along an arbitrary trajectory inside a curved vacuum cham-
ber. The trajectory can be generated by a single bending
magnet (see Fig. 1), or a series of bending magnets. The
relevant chamber along a series of bending magnets can be
extended from Fig. 1. At present, we assume the chamber
has an uniform rectangular cross-section along the beam
trajectory. To close the problem, two long straight sections
are added before the entrance and after the exit of the cham-
ber. Meanwhile, the walls of the chamber are perfectly con-
ducting and always parallel to the beam trajectory.

We continue the work presented in [1, 9] and do investi-
gations in the follow aspects: 1) the features of longitudinal
CSR impedance in a single bending magnet; 2) Optical ap-
proximation of CSR; 3) the interference of CSR fields in
a series of bending magnets and its effects on the longi-
tudinal impedance. This paper focuses on 1) and 2). The
aspect of 3) was discussed in another independent paper
(see Ref. [10]).

PROBLEM STATEMENT

The fundamental equation adopted in our studies of CSR
is the parabolic equation in the frequency domain in a
curvilinear coordinate with the origin on the beam trajec-
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Figure 1: The geometry of the curved chamber for a sin-
gle bending magnet. A infinitely long straight chamber is
connected after the exit of the curved chamber. The beam
moves along the curved line with arrows. The origin of the
coordinate system coincides with the beam orbit.

tory [1, 11]
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where �E⊥ is the transverse electric field, and R(s) is the
s-dependent bending radius along the beam orbit. ε 0 is the
vacuum permittivity. The beam is assumed to be rigid, i.e.
the beam charge density ρ0 does not vary along s. Equation
(1) also describes the field evolution in a straight chamber
where the inverse bending radius is zero.

With paraxial approximation [1], the longitudinal elec-
tric field is a byproduct of the transverse fields and approx-
imated as

Es =
i

k

(
∇⊥ · �E⊥ − μ0cJs

)
, (2)

where μ0 is the vacuum permeability, c is the speed of light
in vacuum, and Js = ρ0c is the current density. The de-
tailed derivation of the above equations can be found in
Refs. [11, 1]. We will not discuss the validity of these
equations either, because it has been well addressed in
Refs. [9, 8].

In our calculations, the beam has a point charge form in
the longitudinal direction and Gaussian distribution in the
transverse directions. Then the longitudinal impedance is
calculated by directly integrating Es over s

Z‖(k) = −1
q

∫ ∞

0

Es(xc, yc)ds (3)

where (xc, yc) denotes the center of the beam in the trans-
verse x−y plane. The appearance of the minus sign in
Eq. (3) is due to the convention of the beam instability for-
malism.

The numerical algorithms adopted in our work are
adapted from the mesh methods originally presented in [1].
We start by dividing the rectangular domain (0, a) × (0, b)
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in the x−y plane into an equidistant M×N mesh with step
sizes Δx = a/M and Δy = b/N in the x and y directions,
respectively. The grid is shown in the solid lines of Fig. 2.
The outer chamber wall is on the right side. The numerical
techniques will not be discussed in this paper. The readers
are referred to [1, 12] for details.
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Figure 2: Staggered grid definition with ghost points out-
side the boundary of the chamber. The positions of various
field components are shown. Constant spacing in the x and
y directions is assumed.

NUMERICAL RESULTS FOR A SINGLE
BENDING MAGNET

To calculate the longitudinal CSR impedance in a single
bending magnet, the beam is assumed to move along the
central line of the curved chamber, i.e. xc = a/2, yc =
b/2. Investigations were performed to examine the in-
fluence of the magnet length on the longitudinal CSR
impedance. For purpose of demonstration, we chose bend-
ing radius R = 5 m, chamber cross-section dimensions
a = 6 cm and b = 3 cm. The magnet length is varied
as Lb = 0.5, 2, 8 m. The impedance results are shown in
Figs. 3(a) and 3(b). In the same figures, we also plot the
results given by the parallel plates model in solid black
lines [1]. And the corresponding wake potentials with
a short bunch of rms length σz = 0.5 mm are given in
Fig. 3(c). From the figures, one sees that when Lb = 0.5 m,
which indicates a short curved chamber, the impedance is
very smooth. When the curved chamber gets longer, the
impedance becomes fluctuating with an interval of around
1.3 mm−1 in wavenumber and eventually results in a series
of resonant peaks. This observation clearly indicates that
the CSR impedance is actually related to the eigenmodes
of the curved chamber [11]. When the curved chamber is
long enough, some specific modes which fulfill the phase
matching condition can be strongly excited by the beam
and become dominant in the radiation field.

One can compare the wavenumbers at the resonant peaks
in Fig. 3(a) with the analytical predictions which are avail-
able in Refs. [8, 5, 11]. According to [8], the resonance
peaks should appear at wavenumbers of

kmn =
nπ

b

√
R

xb
Υ

(
b(m ± 0.25)

nxb

)
, (4)

where the integer indices m and n denote the individual
mode of the curved chamber and xb is the distance from
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(c) Wake potentials

Figure 3: CSR impedance and wake potential for a single
bending magnet. The impedances and wake potentials have
been normalized by the length of the curved chamber. The
purple and black dashed lines denote Ex and Ey modes
with n = 1, respectively. Blue solid lines: Lb = 0.5 m;
red solid lines: Lb = 2 m; green dashed lines: Lb = 8 m;
black solid lines: parallel plates model.

the beam orbit to the outer wall in the horizontal plane. The
plus sign in Eq. (4) indicates Ex modes in which Ey = 0
and m = 0, 1, 2, 3, ...; the minus sign indicates Ey modes
in which Ex = 0 and m = 1, 2, 3, .... According to [8], n
must be odd and n = 1, 3, 5, .... Finally, Υ(r) is defined by

Υ(r) =

⎡
⎣

(√
1 +

r2

3
+ 1

) 1
3

−
(√

1 +
r2

3
− 1

) 1
3
⎤
⎦
− 3

2

.

(5)
When r is large, Υ(r) can be approximated by 3r/23/2 [8].
It implies that the resonance peaks in the CSR impedance
are almost equally spaced along the wavenumber axis.
The resonances are indicated by vertical dashed lines in
Fig. 3(a). It turns out that they agree well with the observed
peaks from numerical calculations.

OPTICAL APPROXIMATION OF
OUTER-WALL REFLECTIONS

As stated in [8, 9], when the aspect ratio of the curved
chamber a/b is larger than 2, the shielding of the inner and
outer walls (walls on the left and right sides in Fig. 2) can
be neglected and the parallel plates model is a good ap-
proximation for a long bending magnet. This criteria works
well in the low frequency region with k < kth which was
proved in [8]. Here kth is the shielding threshold defined
by [8]

kth = π
√

R/b3. (6)

Our calculations do agree with this criteria. On the con-
trary, in the high frequency region, the CSR impedance

Proceedings of IPAC2011, San Sebastián, Spain WEPC108

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 2269 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)



may significantly differs from the parallel plates model
and exhibit fluctuations, even narrow resonance peaks for
a long magnet. A geometrical explanation for this observa-
tion was proposed in Ref. [13] as illustrated in Fig. 4. The
CSR field is radiated in the direction almost tangent to the
beam trajectory when a beam enters the curved chamber.
The outer wall plays a role of mirror and reflects the field
back to the beam. If the curved chamber is long enough,
the reflected fields can accumulate and interfere with each
other. The geometrical picture of CSR suggests a critical
length of

Lc = 2Rθc ≈ 2
√

2Rxb, (7)

for the bending magnet. Here θc = ArcCos (R/(R + xb))
≈

√
2xb/R. If Lb � Lc, some specific modes can be

strongly excited and results in the fluctuations or resonant
peaks in the CSR impedance. If L ≤ Lc, such fluctuations
will be negligible. But if L � Lc, transient effect will also
become important. The critical length indicates a length
when the reflection of the outer wall becomes important.
But Lc does not depends on the aspect ratio of the chamber
cross-section. Therefore, the condition of neglecting outer-
wall shielding, i.e. L ≤ Lc, can be a supplement to the
criteria of a/b ≥ 2 which only applies at low frequency
limit, i.e. k < kth.

R Θc

Figure 4: CSR reflected by the outer wall of the beam
pipe. The beam starts to radiate fields at the entrance of
the curved chamber. The dashed curve without arrows on it
denotes the beam orbit. The arrowed dashed lines represent
the direction of the radiation fields.

Similar to optical approximation in the theory of geomet-
ric impedance [14], the Lc defined by Eq. (7) can also be
interpreted as a catch-up distance over which the CSR, gen-
erated by the head of a beam, reflects from the outer wall
and reaches the beam tail at length Δs behind the head. It’s
easy to calculate Δs from the geometry shown in Fig. 4,
and the result is [13]

Δs = 2R(Tan(θc) − θc) ≈
4
3

√
2x3

b

R
. (8)

The quantity Δs corresponds to a modulation frequency
of [13]

Δk =
2π

Δs
≈ 3π

2

√
R

2x3
b

. (9)

It turns out that Δk = k(m+1)n − kmn is exactly the dis-
tance between adjacent resonances for the same vertical in-
dex n and large argument r in Eq. (5). When comparing
Δs with the bunch length σz , one can find another condi-
tion of neglecting outer-wall shielding effect in evaluating
CSR induced instability, i.e. Δs � σz . Namely, this con-
dition says that the reflected CSR fields from the outer wall
can never catch up with the beam tail and thus has no influ-
ence on the beam in total.

One can check Eqs.(8) and (9) by applying them to the
examples depicted in Fig. 3(a). Δk = 1.4 mm−1 is close
to the observed value of 1.3 mm−1. Δs = 4.4 mm−1 is
roughly the distance at which the first peak appears in the
tail part of the wake potential in Fig. 3(c). Since the bunch
length σz = 0.5 mm is much smaller than Δs, the ampli-
tude of the wake potential in the vicinity of the beam is
almost independent of magnet length. Thus, one can con-
clude that the outer-wall shielding mainly impose effect in
the tail part of CSR wake.

SUMMARY

In this paper we presented the numerical calculations of
the longitudinal CSR impedance for a beam moving in a
curved chamber. The CSRZ code was used to investigate
the properties of CSR impedance of a single bending mag-
net. It turns out that the magnet length, in addition to the
chamber aspect ratio, may also play an important role in
defining the structure of CSR impedance. For a long mag-
net, the shielding effect of the outer wall can be well un-
derstood using an optical approximation model.

The author D.Z. would like to thank K. Yokoya, T. Agoh,
G. Stupakov and Y. H. Chin for valuable discussions.
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