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Although the three-screen method can in principle be 
applied directly, to obtain good results in practice it is 
necessary to adjust the quadrupoles in the matching 
section to get three good images at the design settings of 
the tomography section. Careful tuning can improve 
results if the corresponding spacing of the three projection 
angles is made roughly equal. To reconstruct the phase-
space distribution from such a small projection set, the 
Maximum Entropy Technique is often used [3]. 

The quadrupole scan method, on the other hand, uses a 
set of quadrupole currents calculated to produce field 
gradients which give uniform angular projection intervals 
in phase-space at a subsequent screen [4]. 

The mathematical basis justifying tomographic 
reconstruction in phase-space has been covered elsewhere 
[5], but some of the main practical processing 
considerations will be discussed here. 

 
(a) Preparation for Measurement. 

The current-settings input file for the quadrupole 
scan is generated by software from parameters including 
beam energy, scan orientation (horizontal/vertical), 
beam-line configuration and magnet current limit. The 
current versus gradient calibration for the magnets has 
been measured for all quadrupoles by the manufacturer. 
The software also generates the set of transfer matrices 
corresponding to the current settings and projection 
angles. 

 
(b) Data Acquisition. 

With the desired screen in position – and others 
moved out of the beam – the scan is initiated and runs 
automatically. A computer file lists the required 
quadrupole currents.  These are read one at a time to set 
the magnet current value and a corresponding camera 
image is captured. Because image capture is not 
synchronised to the beam repetition rate, individual 
images occasionally fail to capture the full beam 
intensity; an option for multiple captures per current 
value can be used to allow the software to save the 
brightest at each gradient. After completion of the scan, 
the image set is checked visually, and any failed 
exposures repeated by manually selecting the 
appropriate magnet current. This is aided by the file 
time-stamps which contain the screen and magnet 
identifiers and current setting. 

  
(c) Post-Processing. 

The raw image set undergoes several software 
processing stages to prepare it for reconstruction. The 
CCD cameras typically show a non-zero background 
noise level which is approximately constant across the 
image. One or more background images are used to 
calculate the mean level, which is subtracted from all 
beam images in the set.  To correct for magnification 
differences between cameras, screen calibration factors 
(in mm/pixel) are applied. Images often contain non-
beam artefacts such as spurious reflections; these may 

be excluded by selecting a rectangular window around 
the beam on each image.  The pixel intensities of each 
image are then scaled to give the same integrated 
intensities for all images, in order to correct for beam 
fluctuations. Projections are taken, either onto the x-axis 
for horizontal phase-space, or the y-axis for vertical 
phase space. In order to transform the projection to the 
reconstruction location, scaling factors are applied to 
projections and their corresponding positions arrays [5]. 
The centroid of each projection is calculated, for use by 
the reconstruction algorithm in compensating for any 
imperfect centring of the beam through the quadrupole.  

 
(d) Reconstruction. 

The sinogram, which is the array of projections 
ordered by angle, within the projections file is input to a 
Filtered Back-Projection (FBP) reconstruction code [2]; 
this generates a 2-D distribution in phase-space.  
Different sizes and resolutions of the reconstructed 
distribution can be generated. 

ANALYSIS TECHNIQUES 
The accurate reconstruction of phase-space is always 

degraded by a number of effects: streak artefacts due to 
limited projection angles not covering the complete 0-180 
degree range; irregularities in angle intervals; camera 
pixel noise in images. To reduce the effect of these 
imperfections on the parameters extracted from 
reconstructed distributions, several techniques are 
available. 

(a) Filtering. 
A simple median filter which replaces each pixel by 
the mean of its m x n close neighbours will smooth 
out high-frequency noise. It should not be overdone 
if genuine small-scale features are to be retained. 
Zooming-in to a limited region of interest can also 
reduce the effect of noise in peripheral areas. 

(b) Fitting. 
The most radical processing option is to fit the raw 
reconstruction to a 2-D Gaussian function (surface 
fitting) by a least-squares method. It is assumed that 
in many cases a simple Gaussian will adequately 
describe the true distribution. 

 
The three Twiss parameters  and geometrical 

emittance  are related to the second moments of the 
distribution f(x,x’) by: 

〈	ଶݔ	〉  = 〈	′ݔݔ	〉 ߝߚ = 〈	ଶ′ݔ	〉 ߝߙ− =  ߝߛ
where ߝ = ඥ〈ݔଶ〉〈ݔᇱଶ〉 −  ଶ〈ᇱݔݔ〉

 
Extraction of their values is therefore straightforward, 
although it is heavily influenced by the presence of noise 
in regions outside the main distribution centre. Estimates 
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obtained from distributions fitted according to (b) above 
do not have this problem. 

RESULTS OF EXPERIMENTS 

  

  

Figure 3: Reconstructed phase-space for 16.02.11 dataset: 
raw (L), fitted (R); horizontal (top), vertical (below). 

Parameters derived from measurements made by 
scanning the same quadrupole (QUAD-08 & screen-02) 
under nominally identical beam conditions, operating the 
beam-line at an energy of 12MeV and bunch-charge of 
40pC, have been compared. Measurements made on 
different dates are shown in Table 1. 

Table 1: Summary of horizontal emittance x 
(geometrical) and Twiss parameters  derived from 
tomography measurements. 

 x  x  x

Date (mm-mrad) (m)  
16.02.11 1.51 1.31 -0.20 

27.02.11 0.71 0.40 -0.96 

09.03.11 0.67 0.38 -0.94 

For horizontal phase-space, it is notable that the 
emittance and the Twiss parameters  and  for the 
second two datasets agree well. The emittance estimate 
for the first measurement is however considerably larger. 
From the distribution (Fig. 3), phase-space appears as two 
distinct regions, possibly supporting the suggestion - from 
other measurements - of a split into sub-beams with 
different properties. Under these conditions, parameters 
derived from fitting a single Gaussian are unlikely to be 
meaningful. 

Results after 16/02/11 show increased noise, ascribed to 
low image intensity due to the optical filtration introduced 
to reduce the risk of camera pixel saturation, which 
truncates the beam profile and so distorts the 
reconstructed distribution. This was necessary because the 
cameras used at present are a basic design (for robustness) 
and therefore lack features such as exposure control. 

  Comparisons with earlier horizontal emittance 
measurements x (Table 2) show broad agreement, 
especially in the case of the slit-scan‡ and the simulation 
using the General Particle Tracer (GPT) assuming an 
elliptical cathode spot†, despite the difference in 
measurement conditions and positions (neglecting the 
16/02/11 tomography data). 

Table 2:  Other methods [6] - Summary of emittance 
measurements/simulations. All values in mm-mrad. 

Result  x y 
Single Slit  0.86 N/A 
Slit Scan‡  0.72 N/A 
Quad Scan  1.19 0.31 
Measurement Average  0.92 0.31 
GPT Simulation (Elliptical†)  0.75 0.15 
GPT Simulation (Real Spot)  1.39 0.30 

CONCLUSIONS 
We have used tomographic methods to reconstruct the 

horizontal and vertical phase-space distributions in the 
EMMA injection line. The results have been used to 
calculate the Twiss parameters and the transverse 
emittance of the beam. These will be of use in 
understanding the properties of the beam injected into 
EMMA , and in benchmarking existing models of the 
beam-line. 

Further work on camera systems, to improve 
signal/noise ratios and optimise image intensity, is 
planned to increase confidence in parameters derived 
from the reconstructed phase-space. 
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