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Abstract 
Particle Swarm Optimization (PSO) is a computational 

intelligence algorithm for global optimization. Obtaining 
adequate dynamic and momentum aperture is crucial for 
high injection efficiency and long beam lifetime in low 
emittance electron storage rings. Different from nonlinear 
driving terms optimization, we have made direct 
optimization of dynamic and momentum aperture by PSO 
algorithm. It is critical to make criteria for comparison of 
dynamic and momentum aperture tracking results in the 
direct optimization procedure. Thus, in this paper we first 
propose a quantitative criterion of dynamic aperture. Then 
we apply PSO to the optimization of chromatic and 
harmonic sextupoles to find the optimal sextupole settings 
for enlarging the dynamic aperture. Taking the 
momentum aperture into consideration, we make joint 
optimization of dynamic and momentum aperture. Also, 
the momentum aperture has its quantitative criterion. In 
this paper we also propose some methods for reducing the 
computation time. As an example of application, the 
dynamic and momentum aperture of an FBA lattice 
studied in the design of the storage ring of Hefei 
Advanced Light Source were optimized, and the results 
have shown the power of PSO algorithm.  

INTRODUCTION
The nonlinear optimization of dynamic aperture (DA) 

and momentum aperture (MA) is important for obtaining 
high injection efficiency and long beam lifetime in the 
lattice design for future light sources and possible 
upgrades of existing light sources. Minimizing the 
nonlinear driving terms is widely used for the nonlinear 
optimization. It has been successful in its application, but 
the setting of weight factors for the terms is based on the 
designers’ experiences to some extent. Presently, 
Artificial Intelligence (AI) algorithms for example 
Genetic Algorithms are applied to nonlinear optimization 
for some light sources. In [1] we use PSO to optimize 
harmonic sextupoles for enlarging DA.   

There are two important problems in the nonlinear 
optimization using AI algorithms. One is how to 
quantitatively describe the objective functions, and the 
other how to reduce the computation time. In this paper, 
we will address these two problems.  

OPTIMIZATION OF DA 
Quantitative Criterion of DA 

Here we use the tracking program elegant [2] for the 

simulations of DA and MA. For the DA simulation, the 
command bunched_beam is used. In our cases, the 
number of tracking particles is 1600, and initially the 
particles are uniformly distributed in physical space. With 
so many tracking particles, one can find some small 
unstable islands, but the calculation consumes much time.  

Our proposed quantitative criterion of DA is shown in 
Fig. 1. A is an unstable island where the tracking particles 
will be lost after a number of turns and B is a stable island 
where the tracking particles can survive. The quantitative 
criterion is described by the following formula:  
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P represents the area of the orange pyramid-like shape; L 
represents the left area (x<0) of the P, and R the right; and 
E represents the area inside the pink half-ellipse.  

 
Figure 1: Schematic of the quantitative criterion of DA. 
A pyramid-like shape is made in the DA boundary as 

the useful area of DA. From x=0 to both sides, the height 
of the pyramid-like shape decreases along the boundary. 
If the height is equal to a predefined value, the length of 
the pyramid-like shape will stop at this position. So the 
left “tail” of the DA is clipped off as shown in Fig. 1. We 
can restrict the height of the pyramid-like shape as the 
green line in Fig. 1. In such a case, the useful area of DA 
is the area of the pyramid-like shape below the green line.  

The symmetry of DA is important, and the absolute 
difference of L and R describes the asymmetry to a certain 
extent. The pink half-ellipse is the largest half-ellipse 
inscribed into the DA boundary, with a predefined ratio of 
the x-half-axis length to the y-half-axis length.  

Our recommended value for the coefficient k1 is 
between 0 and 0.5, and k2 between 0 and 3.  

 Standard and Constrained PSO Algorithms 
Particle Swarm Optimization (PSO) was proposed by 

Kennedy and Eberhart in 1995. In PSO, each particle 
updates its velocity and position according to:  
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where xid, vid, and pid are respectively the position, 
velocity and best position so far of the ith particle in the dth 
dimension, pgd is the global best position so far, w is the 
inertia weight, c1 and c2 are two learning factors, and r1 
and r2 are two uniformly distributed random variables in 
[0, 1]. In our cases, w=0.729, c1=c2=1.49445.   

 ___________________________________________  
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In our optimization of DA, the objective function is D, 
and the PSO algorithm minimizes the objective function. 
The constraints are corrected chromaticity settings. The 
constraint violations are treated as an additional objective 
function. In our nonlinear optimization, both the corrected 
horizontal and vertical chromaticities (Cx, Cy) are set to be 
in the range [0, 4].  

For two solutions with constraint violations less than or 
equal to , the one having lower value of D is better. If 
both values of constraint violations are greater than , the 
one having smaller constraint violations is better. If the 
value of the constraint violations of one solution is less 
than or equal to , and that of the other solution is greater 
than , the one having smaller constraint violations is 
better.   

Optimization Strategies 
The DA calculation has a special characteristic. For one 

solution, if its several-turn DA is good, its hundreds-of-
turn DA may be good. But if its several-turn DA is bad, 
its hundreds-of-turn DA must be bad. Based on this, we 
proposed the “More Turns and Fewer Turns” (MTFT) 
strategy for reducing the computation time.  

At some iteration of the PSO algorithm, consider 
D_best to be the best quantitative value of DA in the 
swarm found so far, which is tracked, for example, for 
hundreds of turns. For one particle, its DA is first tracked, 
for example, for only several turns. If the quantitative 
value D_i of this tracked DA is less than the value of 
D_best times ka (D_i<ka×D_best), we assign the value of 
D_i times kb (kb×D_i) as the hundreds-of-turn DA 
quantitative value of this particle, where ka is a positive 
constant about 1 and kb is a constant in the range 0<kb<1, 
and ka times kb is less than 1 (ka×kb<1). If D_i is greater 
than or equal to ka×D_best, the particle’ DA is then 
tracked for hundreds of turns to get its hundreds-of-turn 
DA quantitative value.   

Now look at Equation 2. There are two important 
quantities, pgd and pid, which direct the motion of the ith 
particle. If at some iteration the particle’s DA is first 
tracked for fewer turns, and its quantitative value is less 
than that of the DA corresponding to pid, there is no need 
to track the particle’s DA for more turns. The particle’s 
position will not replace its previous best position pid and, 
of course, also not replace the swarm’s previous best 
position pgd. Thus, the equation of motion for the particle 
will not change whether the particle’s DA is tracked for 
fewer turns or more turns.  

Consider that the DA of particle i is only tracked for 
fewer turns (because D_i<ka×D_best), and its assigned 
value for more turns is kb×D_i. First we can simply prove 
that the assigned value is less than D_best. Thus, the 
particle’s position will not replace pgd. That also means 
that the swarm’s best DA is always tracked for more turns 
and its quantitative value is precisely calculated. Then we 
consider the quantity pid. If kb×D_i is greater than the 
quantitative value of the DA corresponding to pid, the 
particle’s position will replace pid. But kb×D_i is an 
assigned value, and its corresponding DA is not tracked 

for more turns. Thus kb×D_i is not so accurate, and then 
some perturbations are introduced into the PSO algorithm. 
But in AI algorithms, to escape from local minima, 
perturbation methods are usually used. So the above 
perturbations in PSO are not as bad as they may seem.   

If the number of the more turns is N_M, and the number 
of the fewer turns is N_F, using the MTFT strategy, 
theoretically the computation time can be reduced by a 
factor of N_M/ N_F at most. But in some our optimizations, 
from the point of view of the iteration number, it is more 
than N_M/ N_F. That means that using the strategy, at the 
same iteration the number of the particles satisfying the 
constraints is usually smaller than not using the strategy 
(because of the perturbations). So it can speed up the 
iteration process. Empirical study shows that the 
performance of unconstrained PSO is not sensitive to the 
population size. We assume that the performance of 
constrained PSO is not sensitive to the number of the 
particles satisfying the constraints. Thus the iteration 
number becomes important. So, using the strategy, the 
computation time can be reduced much more. And, as 
analysed and assumed above, in our DA optimization, we 
found that the PSO algorithm using our proposed MTFT 
strategy can get as good results as not using the strategy.  

The global version of the PSO converges very fast, but 
is easily trapped into local minima. The local version of 
the PSO can overcome this problem. Here we use the 
local version to optimize the DA. In our local version, 
most local bests satisfy the condition D_i ka×D_best, 
and their corresponding dynamic apertures are tracked for 
more turns. So perturbations are mainly on particles’ 
personal bests, not on their “leaders” local bests.  

To make some relatively good solutions as good 
“attractors” at the beginning of the algorithm, we 
proposed the pre-initialization strategy. Before 
initialization, the same size population as in initialization 
is repeatedly initialized lots of times. In this process, the 
dynamic apertures of the solutions satisfying the 
chromaticity constraints are tracked for only one turn or 
several turns. At the end of the process, some solutions 
having better objective function values than others are 
selected. The number of these best solutions in pre-
initialization is equal to the number of local bests. Then, 
at initialization, the positions of these best solutions are 
respectively assigned to the positions of the same number 
of particles. The process of pre-initialization is quick.  

Application to an FBA Lattice 
As an example of application, we have optimized the 

DA of an FBA lattice studied in the design of the storage 
ring of Hefei Advanced Light Source (HALS). The 
optical functions of one period are shown in Fig. 2. The 
lattice has 20 super-periods, with emittance of 69pm rad 
at 1.5GeV.  

In our optimization related to DA, we choose 50 or 100 
turns as the more turns, and 4 or 5 turns as the fewer turns. 
In our experience, this is a good choice if we want to 
reduce the computation time. After optimization, we can 
check the obtained optimal solutions with detailed 
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tracking and analysis. The coefficient kb is always 0.8, 
and the other ka is slightly greater than or equal to 1. 

First we use seven variables of chromatic sextupole 
strengths to optimize the DA. ka is set to 1. We optimized 
the DA without lattice errors, using the local version of 
PSO with a population size of 10000 and 30 iterations, on 
a common PC computer (2.50GHz CPU). At pre-
initialization, the population was repeatedly initialized 
200 times. After optimization, two sextupole strengths are 
basically zero. So we can employ five families. The 
variable range for optimal solutions is obtained.  

Then we add two harmonic sextupoles to further 
optimization. So there are seven variables. The searching 
range of chromatic sextupole strength is set to the range 
obtained above. To reduce the computation time, ka is 
increased to 1.1. The local version of PSO with a 
population size of 400 ran for 75 iterations on the same 
PC computer. At pre-initialization, the population was 
repeatedly initialized 30 times. Lattice errors were 
included in this further optimization. The DA of one of 
obtained optimal solutions is shown in Fig. 3 (left plot 
(a)).  

Even though with 1600 tracking particles, either of 
these two works was done in only three days on the PC 
computer. It strongly shows the power of our proposed 
MTFT strategy for reducing computation time.  

 
Figure 2: Optical functions of one period of the FBA lattice. 
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Figure 3: Left: DAs obtained in DA optimization (a) and in 
joint optimization (b); Right: transverse MA. (with errors) 

JOINT OPTIMIZATION OF DA AND MA 
In the lattice design, we want to find the lattice not only 

having good DA but acceptable MA as well. Our 
proposed quantitative criterion of MA is described by:  

),0(    3min3 kMkMMM np                             (3) 
where Mp represents the minimum value of MA along the 
lattice in the positive momentum deviation direction; |Mn| 
represents the minimum absolute value of MA in the 
negative direction; Mmin represents the minimum between 
Mp and |Mn|. Let Me be the enough value of MA. If the 
value of Mp or |Mn| is greater than Me, the value of Me is 
assigned to Mp or |Mn|. In our case, the coefficient k3=0.5.  

For one solution, if its DA is not good, we will not 
choose this solution even though its MA is good. So, in 
such a case, it is not necessary to calculate the MA. Based 
on the algorithm above, we introduced another objective 
function –M to describe MA for the joint optimization of 
DA and MA. For one solution, if its DA quantitative 
value is less than a predefined value D_p, its value of –M 
will be set to a positive constant. If its DA quantitative 
value is greater than or equal to D_p, its MA will be 
calculated by tracking. For two solutions in the second 
case, if they have different values of –M, the one having 
lower value of –M is better; and if they have the same 
value of –M, the one having lower value of D is better. 
The predefined value D_p can be decided according to the 
results of the previous optimization of DA, defining the 
search region of interest. That is to say, that MA is only 
calculated by tracking in the region of good DA with 
quantitative value greater than or equal to D_p.   

Here we also use the MTFT strategy to reduce DA 
computation time. The value of D_best is set to D_p when 
D_best is greater than D_p. Because ka×kb<1, we can 
simply prove that if one solution’s MA is calculated by 
tracking, its DA must be tracked for more turns.  

In this joint optimization, many parameters are the 
same as those in the latter case of the previous DA 
optimization. Lattice errors are also included. Here we 
only consider the transverse MA, and it is tracked for 
several tens of turns. After optimization, the optimal 
solutions are checked with detailed tracking and analysis. 
Me is set to 4%. To quickly find optimal solutions, we 
used the global version of PSO. The algorithm with a 
population size of 600 ran for 30 iterations on the PC 
computer, and it consumed about one week.  

The optimal solutions obtained in the joint optimization 
have better momentum apertures compared to those 
obtained in the previous DA optimization without MA 
optimized. In the positive direction, the values of Mp of 
the optimal solutions obtained in the joint optimization 
are larger by about 1% than those obtained in the previous 
DA optimization. In the negative direction, the MA 
values are all basically large enough with values beyond 

4% for both cases. The DA and transverse MA of one of 
obtained optimal solutions are shown in Fig. 3 (left plot (b) 
and right plot). Then we lowered the value of D_p to 
simultaneously optimize DA and MA again. We found 
that the MA can be further improved at the price of the 
reduction of DA. With our just set up parallel computer, 
we will perform full 6D tracking for many turns for 
accurate determination of MA.  
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