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Abstract 
A proposal to search for direct e conversion at 

Fermilab requires slow, resonant extraction of an intense 
proton beam. Large space charge forces will present 
challenges, partly due to the substantial betatron tune 
spread. The main challenges will be maintaining a 
uniform spill profile and moderate losses at the septum. 
We propose to use "radio frequency knockout" (RFKO) 
for fine tuning the extraction. Strategies for the use of the 
RFKO method will be discussed here in the context of the 
Mu2e experiment. The feasibility of this method has been 
demonstrated in simulations. 

INTRODUCTION 
The Mu2e experiment is proposed at FNAL to search 

for rare neutrinoless decays of a muon to an electron in 
the Coulomb field of the atomic nucleus [1]. The design 
sensitivity of this experiment is unprecedented 6×10-17, 
and requires a very strong suppression of the background. 
The Fermilab Debuncher ring will provide a slow spill 
with a pulsed longitudinal structure and very clean gaps 
between bunches for this purpose. A single short bunch 
per beam turn, slowly extracted from the Debuncher, 
gives an interval between pulses that is equal to the 
Debuncher revolution period of 1.69s. This is almost 
ideal for the experiment’s requirements. Additional 
suppression in the gaps between pulses is provided by an 
external extinction system, that removes out-of-time beam 
at level of 10-10.  

The 8 GeV kinetic energy proton beam originates from 
the FNAL Booster and is sent to the Accumulator via the 
Recycler. Three batches of 53MHz Booster beam are 
momentum stacked and then rebunched into h=4, 2.5MHz 
rf buckets. Beam bunches are then sequentially 
transferred, one at a time, to the Debuncher and slowly 
extracted to the Mu2e target over a time interval of 
160ms. 

RESONANT EXTRACTION 
Third order resonant slow extraction is the base line 

design for the Mu2e project, because it promises 
potentially better extraction efficiency, which is crucial 
for 24kW beam operation. The details of the extraction 
scheme have been described elsewhere [2], where the idea 
of using RFKO for spill rate control is introduced and its 
feasibility is shown. Computer simulations of third-
integer resonant extraction have been performed using the 
ORBIT code developed at ORNL [3]. We also have used  

 

this code for investigating the RFKO details presented 
here. The detector conditions of the Mu2e experiment set 
strict requirements on the uniformity of the spill. The 
main challenge of satisfying the spill uniformity 
requirement is the large space charge tune spread. In the  
current design conditions SC tune shift is expected to be 
0.012-0.015. 

Figure 1 shows the distributions of particle tune versus 
the horizontal action at the onset of the resonance (a), and 
at the point when the machine tune reaches the resonance 
point 29/3. 

 
Figure 1: Tune distributions vs. horizontal action at the 
onset of the resonance and at exact resonance. 

Red lines show the 2/3 resonance extraction area 
boundaries due to a sextupole field that is imposed to 
create a 3rd order separatrix. When the machine tune 
reaches 29/3, a substantial part of the beam remains and is 
far from the resonance. The tune ramp is stopped at this 
point, extraction continues, and the tune spread shrinks. 
This helps the extraction rate, but takes a long time. 
Clearly, it is a very challenging task to adjust tune ramp 
so that the extraction rate is uniform, especially since the 
rate at which quadrupole field corrections can be made is 
very limited. 

RF KNOCK-OUT 
We propose another way to assist extraction in the 

situation close to Figure 1b. Using an RF horizontal kick, 
one can effectively heat the beam transversely and 
therefore assist the transition of particles through the 
separatrix into the unstable region. With proper mixing, it 
also assists in depopulating the low amplitude part of the 
distribution, therefore helping to create a more uniform 
tune distribution. 

This technique is known as RF knock-out (RFKO). It 
has been already used for slow extraction purposes in 
medical applications [4], although the primary use in 
these applications is to turn off/on the beam extraction. 
Our goal is to use RFKO as a tool for the fine control of 
the spill rate.  

RFKO allows us to continue extraction in the presence 
of the strong space charge while keeping the machine 
tune close to the resonance. In this case particles are 
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