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INVARIANT AMPLITUDE MATCHING 
In order to achieve a constant transverse beam size and 

low emittance throughout the linac structure, without 
a surrounding solenoid, the invariant amplitude condition, 

 

ߪ      = ଶఊ′ට ூଷூబఊ     (1) 

 
should be met [8]. This relates the beam size σi at the 
linac entrance to an accelerating gradient γ’ for a beam of 
current I and initial energy γi. For a beam with initial 
energy of 4.5 MeV, linac gradient of 26.25 MV/m, 
current of 15 A, this condition is met with σi = 0.21 mm. 

The beam should also enter the linac with zero 
divergence. This occurs when the position of the beam 
size minimum and the position of the local emittance 
maximum (between the two minima) meet. Fig. 3 shows 
that such a case can be met by adjusting the gun phase 
and solenoid strength. The linac is then placed in the 
position described.  

 

Figure 3: Evolution of rms beam size [mm] (green) and 
transverse emittance [mm mrad] (red). 

SIMULATION RESULTS 
Fig. 4 shows the evolution of the beam size and 

emittance along injector with the linac placed at the 
optimum position described above. The beamline 
parameters are described in Table 1. Final beam 
parameters are summarised in Table 2. Each simulation 
used 100,000 macroparticles. 

Table 1: Beam line parameters used in simulations 

Parameter  Units 

Bunch charge 100 pC 
Laser spot diameter 1 mm 
Laser pulse width (FWHM Gaussian) 5 ps 
Initial thermal emittance 0.225 mm mrad 
Gun peak field 100 MV/m 
Gun phase - 5 ° 
Solenoid peak field 0.190 T 
Linac entrance position 1.85 m 
Linac peak field 40.3 MV/m 
Linac field flatness 0.58  
Linac phase + 5 ° 

 
Figure 4: Evolution of rms beam size [mm] (green), 
transverse emittance [mm mrad] (red), and rms bunch 
length [ps] (blue). 

For a reduced gun gradient of 80 MV/m, similar 
matching conditions were found by reducing the solenoid 
peak field to 0.155 T. Fig. 5 shows the final current and 
emittance profiles at both gun gradients. 

 

 
Figure 5: Current and emittance profiles for gun peak 
fields of 100 MV/m (blue) and 80 MV/m (red). 

Table 2: Beam parameters for different gun gradients 

Gun gradient 100 80 MV/m 

Beam size (rms) 0.212 0.209 mm 
Projected emittance 0.638 0.654 mm mrad 
Peak current 21 17 A 
Bunch length (rms) 1.60 2.05 ps 
Bunch length (full) 7.38 8.79 ps 
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JITTER AND TOLERANCES 
Using the 100 MV/m setup as described in Table 1 as 

the basis, jitter studies were carried out to determine what 
the effect of random errors are on the bunch to bunch 
parameters and beam stability. Table 3 summarises the 
jitter sources considered. The standard deviations were 
taken as best cases from other laboratories. 

Table 3: Jitter sources 

Parameter Standard deviation Unit Label 

Bunch charge 1 pC Q 
Laser x position 0.02 mm L1 
Laser y position 0.02 mm L2 
Laser arrival time 300 fs L3 
Gun gradient 0.1 % G1 
Gun phase 0.1 ° G2 
Solenoid strength 0.1 % S1 
Linac gradient 0.1 % A1 
Linac phase 0.1 ° A2 

 
To determine the most sensitive sources of error, each 

source of jitter was varied individually, with the results 
shown for difference from the nominal emittance and 
bunch length in Figs. 6 and 7 respectively. 

Figure 6: Percentage change in emittance for +/- errors as 
shown in Table 3. 

Figure 7: Percentage change in bunch length for +/- errors 
as shown in Table 3. 

To investigate the jitter which can be expected during 
machine operations, 1000 simulations, each of 10,000 
macroparticles, were performed. For each simulation, 
errors on each jitter source were sampled randomly 
according to a Gaussian distribution, truncated at three 
standard deviations as per Table 3. 

All jitters are defined by varying one beam line 
parameter from the nominal, apart from the arrival time of 
the laser pulse which is emulated by changing the phase 
of the gun and linac simultaneously. Figure 8 summarises 
the distributions of emittance, bunch length, arrival time 
and energy when all random jitters are applied.  
 

Figure 8: Histograms of beam parameters after 1000 
simulations with random jitters applied. 

These jitter simulations show that beam parameters can 
be expected to vary with standard deviations of 0.8% for 
projected emittance, 0.6% for bunch length, 0.14 ps for 
bunch arrival time and 0.1% for beam energy. 

SUMMARY 
The beam dynamics simulations of the MAX-IV gun 

have been presented. It has been shown that emittance of 
less than 0.7 mm mrad can be achieved, for both the 
nominal 100 MV/m accelerating gradient of the S-band 
RF gun, and the reduced 80 MV/m accelerating gradient. 
Given the set of tight tolerances shown, jitter studies have 
shown that operational beam parameters should not vary 
by more than 1 %. 

REFERENCES 
[1] MAX IV conceptual design report (2006). URL 

http://www.maxlab.lu.se/maxlab/publications/max4/
MAX-IV-CDR.pdf. 

[2] S. Werin et al., Nuclear Instruments and Methods in 
Physics Research A 601 (2009) 98–107.  

[3] S. Thorin et al., "Design of the MAX IV Ring 
Injector and SPF/FEL Driver", proceedings of 
PAC 2011. 

[4] S. Thorin et al., “Bunch Compression by Linearising 
Achromats for the MAX IV Injector”, proceedings of 
FEL 2010. 

[5] P.H. Williams et al.,  "Optics Design and Tolerance 
Studies of the Max-IV Linac", these proceedings, 
THPC067. 

[6] G. D'Auria et al., "The New Photoinjector for the 
Fermi Project", proceedings of PAC 2007. 

[7] D. Dowell, "The Limits of Beam Brightness from 
Photocathode RF Guns", FEL 2010. 

[8] L. Serafini & J.B. Rosenzweig, Phys. Rev. E, 55 (6) 
p7565-7590 (1997) 

Q L1 L2 G1 G2 S1 A1 A2

�0.4

�0.2

0.0

0.2

0.4

0.6

Q L1 L2 G1 G2 S1 A1 A2

�0.3

�0.2

�0.1

0.0

0.1

0.2

0.3

0.65 0.70 0.75 0.80 0.85
0

50

100

150

Emittance �mm mrad�

1.57 1.58 1.59 1.60 1.61 1.62
0

20

40

60

80

100

Bunch length �ps�

�0.4 �0.2 0.0 0.2 0.4
0

10

20

30

40

50

60

70

Arrival time �ps�

103.7 103.8 103.9 104.0 104.1 104.2 104.3
0

20

40

60

80

Energy �MeV�

Proceedings of IPAC2011, San Sebastián, Spain THPC131

02 Synchrotron Light Sources and FELs

T02 Lepton Sources 3193 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)


