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Abstract 
In preparation for a high brightness, high average cur-

rent electron source for the energy recovery linac 
BERLinPro an all superconducting radio-frequency (SRF) 
photoinjector is now in operation at Helmholtz-Zentrum 
Berlin. The aim of this experiment is beam demonstration 
with a high brightness electron source able to generate 
short, few ps long pulse length electron bunches from a 
superconducting (SC) cathode film made of Pb coated on 
the backplane of a Nb SRF cavity. This paper describes 
the setup of the experiment, first results from beam 
measurements and capabilities of the source derived from 
beam dynamics considerations. 

In April 2011 the photoinjector generated and 
accelerated for the first time electron beam. This result 
marks the highlight of the project running for two years 
starting with project approval in May 2009. 

MOTIVATION 
Modern accelerator based lightsources like Energy 

Recovery Linac (ERL) driven synchrotron radiation 
sources, Free Electron Lasers (FEL), or THz radiation 
sources require injectors capable of delivering high-
brightness electron beams at high average current with 
near-continuous operation.  

HZB will explore the ERL paradigm as a driver 
accelerator for next generation light sources with the ERL 
test facility BERLinPro [1], a fully integrated test 
accelerator with all components and infrastructure 
required to build a full-scale ERL. The baseline design of 
BERLinPro calls for an SRF photoinjector able to deliver 
an average current of 100 mA with bunches with low 
emittance of better than 1 mm mrad which can be 
compressed to ps-level bunch length [2]. 

The choice of photocathode material is of paramount 
importance for the SRF photoinjector. The initial electron 
beam parameters, like thermal emittance, pulse length, 

and average current are determined by the photocathode 
and drive laser properties. The SRF environment of the 
accelerating cavity places additional considerations. Any 
normal conducting cathode material needs to be 
electrically insulated against the SC cavity material. The 
RF choke filter by Volkov [3] is an attractive solution for 
this and enables the use of nearly all available 
photocathode materials like multi-alkali (CsK2Sb) or 
other semiconductor compounds with quantum 
efficiencies in the region of 10^-1 to 10^-2 for visible 
wavelengths.  

FELs and THz radiation applications ask for high 
transverse peak brightness and only moderate average 
currents in the order of 1 mA. The requirements on the 
photocathode are more relaxed concerning high average 
current, which would allow the use of metallic 
photocathodes with all its benefits and drawbacks. The 
main drawback is the low quantum efficiency of the order 
of 10^-3 to 10^-5 for UV wavelengths, the main 
advantages the long lifetime and ultra-fast response time. 
Sekutowicz et al developed the idea of the hybrid Nb/Pb 
gun cavity [4], where a small spot of Pb is deposited on 
the backplane of the Nb cavity. Several test cavities have 
been built and all cavity handling procedures have been 
optimized not to compromise the cavity quality factor Q0 

and achievable gradient with a Pb film present on the 
backplane [5].  

The work presented in this paper takes this idea to a 
beam experiment. The goal is to build a SRF injector with 
a hybrid Nb/Pb cavity, characterize the SRF cavity, 
characterize and laser clean the Pb cathode, and finally 
generate an electron beam with this setup.  

INJECTOR SETUP 
The SRF photoinjector was setup in the time from May 

2009 to April 2011 at HZB. The experiment makes heavy 
use of existing SRF infrastructure of the Horizontal Bi-
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The maximum kinetic energy is 1.9 MeV and is 
reached at 5 degL. Fig. 3 shows a plot of phase scans 
looking at the extracted charge at two spots on the 
photocathode with different QEs. The phase window for 
extraction is roughly 10 degL larger at the high QE 
location. The curve shape around 0 degL injection phase 
is proportional to the integral of the bunch length 
distribution. We see from the plots that the bunch length 
during extraction is longer for the region QEhigh compared 
to the QElow spot, most likely due to the higher charge 
density at QEhigh. 

 

 

Figure 3: Phase scans at two cathode spots with a gradient 
of 20 MV/m. 

We measured the transverse beam emittance with the 
solenoid scan technique.  Here the procedure consists of a 
variation of the focal length of the SC solenoid while 
observing the transverse size of the charge distribution 
with the first viewscreen. From a plot with the squared 
beam size versus the solenoid strength we can determine 
the Twiss parameters of the charge distribution at the 
entrance of the solenoid by fitting a linear beam optics 
model to the data. 

Fig. 4 shows data and the linear beam optics model for 
a measurement at 2.5 pC and the injector set to a gradient 
of 20 MV/m. The foci for the horizontal and vertical 
plane are shifted indicating astigmatism of the solenoid 
lens. Furthermore the focused spot size in the horizontal 
plane is larger compared to the vertical plane, also caused 
by field errors of the solenoid lens. We found the solenoid 
also steering in the horizontal direction. From these 
observations we may conclude that the solenoid has a yaw 
error leading to astigmatism and higher order 
contributions to the beam emittance. 

We measured the emittance as a function of bunch 
charge q for 2.5, 1.875 and 1.5 pC and investigated the 
scaling of the emittance proportional to q2/3[15]. 
Assuming that the vertical data is following the linear 
beam optics model and represents the true transverse 
emittance we can extrapolate a zero charge emittance 
which should give us already a good indication of the 
thermal emittance of the cathode.   

 

 
 

Figure 4: Solenoid scan data and linear beam optics 
model.  The errorbars for the beam size measurement is 
comparable to the dot size. 

For the vertical data only we get a zero charge 
emittance to laser spot ratio for the Pb cathode of εzc = 
(1.27 +/- 0.39) µm/mm (rms). 

CONCLUSIONS & OUTLOOK 
First beam with the SRF photoinjector was achieved in 

April 2011, two years after project approval. Since then, 
we are following an intense commissioning programme. 

For the next run of the SRF photoinjector in the first 
half of 2012 we plan to install a new gun cavity with 
tuner system, equip the solenoid with actuators, update 
the viewscreen system of the diagnostics beamline and 
improve the Pb cathode deposition and handling systems. 
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