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Abstract 
   In particle accelerators, the beam coupling impedance is 
one of the main contributors to instability phenomena that 
lead to particle losses and beam quality deterioration. For 
this reason these machines are continuously monitored 
and the global and local amount of impedance needs to be 
evaluated. In this work we present our studies on the local 
transverse impedance detection algorithm. The main 
assumptions behind the algorithm are described in order 
to understand limits in reconstructing the impedance 
location. The phase advance response matrix is analyzed 
in particular for the nominal gamma transition SPS lattice 
(Q26), studying the different response from 90, 180, 270 
degree phase advance sections. The thin lenses scheme is 
also implemented and new analytical formulas for phase 
advance beating were derived. This enabled us to put 
reconstructing lenses everywhere in the lattice, and to 
study their positioning scheme. Limits in linear response 
are analyzed. This relates the upper and lower limits in 
reconstruction to the phase advance measurement 
accuracy and the linear response regime limit. 

INTRODUCTION 
   Transverse Mode Coupling Instability driven by 
machine impedance is one of the major single bunch 
intensity limitations in the SPS. Possible cures include an 
increase of the slippage factor  [1] or the identification 
and elimination of the major sources of impedance of the 
machine which has been built more than 30 years ago. 
The transverse effective impedance can be inferred by 
measuring the tune shift as a function of the bunch 
intensity. This was theoretically studied for instance in [2] 
where the following formula relating the coherent tune 
shift of mode 0 and the generalized (i.e. dipolar + 
quadrupolar) impedance is	 given: ∆ܳ௫,௬ = − ߪ߱02ܳ௫,௬݉ߛߨ√4ܫ݁ ൫ܼ௫,௬݉ܫ ൯, (1) 

where ܫ = ܰ݁/ ܶ is the beam current, ܰ the single 
bunch population, ݁ the proton charge, ݉ the proton 
mass, ܶ the revolution period, ߱	the revolution 
frequency, ܳ௫,௬	the betatron tune, ఉ߱௫,௬ = ܳ௫,௬߱	the 

betatron frequency respectively for x and y planes, ߪ the 
rms bunch length for a Gaussian bunch, ߛ the relativistic 
gamma and ݉ܫ(ܼ௫,௬ ) the imaginary part of the effective 
impedance for both planes.  
   The impedance obtained in this way is a global 
parameter. In order to have a local description of the 
impedance distribution, the overall effect of the tune shift 

is considered as the summation of smaller tune shift 
provoked by single impedance sources: ∆ܳ௫,௬ =  ∆ܳ௫,௬.ே

ୀଵ  (2) 

   Similar tune shifts can be reproduced by thin 
quadrupole errors. For small errors ∆ ݇	a beta-beating 
wave provokes a tune shift given by: ∆ܳ௫,௬ = ߨ14 ∆௫,௬ߚ ݇௫,௬, (3) 

where ߚ௫,௬is the beta function at the kick location. 
In the limit in which the impedance detuning can be 
associated with a thin quadrupole detuning, Eqs. (1), (2) 
and (3) can be chained obtaining: 14ߨ  ∆௫,௬ߚ ݇௫,௬

ே
ୀଵ =  ߪ߱ଶܳ௫,௬݉ߛߨ√4ܫ݁− ௫,௬ܼ)݉ܫ )ே

ୀଵ . (4) 

This moves the problem to finding the errors ∆ ݇ along 
the studied accelerator. As the tune shift with intensity is 
the parameter to get the global impedance, the change of 
the phase advance between two positions as a function of 
the bunch intensity is the observable to get the local 
impedance [3].  

METHOD 

   Here we briefly describe the method [3] we use to 
obtain the ∆ ݇௫,௬errors along the SPS accelerator. For 
small quadrupole errors a phase-beating wave is excited 
as well as a beta-beating one. The latter can be calculated 
analytically starting from the beta-beating formula: 
(ݏ)ߚ(ݏ)ߚ∆  = 2(ݏ)ߚ− sin(2πQ) cos(2ห߮(ݏ) − ห(ݏ)߮ − ∆(ܳߨ2 ݇, (5) 

 
where (ݏ)ߚ and ߮(ݏ) are the perturbed beta and phase 
function at the “s” location in the ring, “0” subscript 
refers to the unperturbed quantities, “j” to the position of 
the focusing error ∆ ݇ [4]. The phase beating is given by: ߮(ݏ) = න ௦(߬)ߚ1

 ݀߬ + ߮(0).  
 

Setting the initial phase ߮(0) = 0 and expanding the ߚ 
function to the first order we get: ߮(ݏ) = න (߬)ߚ1 ൬1 + (߬)൰ߚ(߬)ߚ∆

௦
 ݀߬ = 	න (߬)௦ߚ1

 ݀߬ − න ଶ(߬)௦ߚ(߬)ߚ∆
 ݀߬ (6) 

The second term in Eq. (6) can be integrated to get the 
phase-beating along the entire accelerator. More than 
phase-beating, we are interested in the phase advance 
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