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The space-charge effect can also be seen by the tune 
depression that indicates the focusing deficit experienced 
by the beam within the periodical structures. Fig. 3 shows 
that this tune depression in the transverse plane is very 
low, between 0.4 and 0.6 in the RFQ, and between only 
0.2 and 0.6 along the four cryomodules of the SRF-Linac.  

GENERAL STRATEGY 
The unprecedented high beam intensity induces the 

simultaneous combination of two other unprecedented 
challenges: high beam power and high space charge. That 
leads to numerous issues, often conflicting, which ask for 
a general strategy that can be summarised as follows (see 
details in [2] and references therein): 

- For E < 5 MeV, i.e. for the ion source Extraction, the 
LEBT and the RFQ, beam losses are still significant (~ % 
of the beam), the global aim is to be able to obtain the 
required 125 mA. At these low energies, the conflicting 
issue comes from the emittance that can explode due to 
the strong space charge, but must be low enough to be 
injected into the RFQ. All the efforts must therefore be 
dedicated to work around the space-charge effects: 
enlarge extraction aperture, shorten as much as possible 
source extraction and RFQ injection lengths where there 
is poor space-charge compensation, enhance this 
compensation in the LEBT by injecting heavy ion gas and 
installing electron repellers at entrance and exit, increase 
extraction field and RFQ focusing field to the limit of 
electric breakdown. A crucial point too is to calculate 
precisely the resulting space-charge potential map in the 
LEBT taking into account all the above ingredients. 

- For E > 5 MeV, i.e. for the MEBT, the SRF- Linac 
and the HEBT, losses can cause harmful material 
activation and must be maintained much less than 1W/m. 
As simultaneously the beam power is in the MW class, 
the global aim is to maintain micro-losses much less than 
10-6 of the beam. This very limiting constraint is made 
furthermore difficult by the presence of strong space-
charge forces, so that every tuning is distribution 
dependent. As a result, considerations of RMS beam 
characteristics are no more enough, multiparticle 
simulations with more than 106 macroparticles are 
mandatory, which are very time consuming. An 
uncommon procedure has been adopted then: beam 
dynamics optimisations aim to optimise the extent of the 
very external beam border, rather than emittance or beta 

values. We can speak about "halo matching" rather than 
"envelope matching". 

Another concern for very high-intensity accelerators is 
the need of possibly frequent in-situ fine tunings, because 
they strongly depend on the initial beam distribution 
characteristics. That is conflicting with the lack of 
diagnostics imposed by the compactness necessary for 
reducing space-charge effects. For IFMIF, we have 
adopted the rule to only carry out beam dynamics 
optimisations that can be later applied online. For the 
LEBT, the focalisation setting has been established by 
searching to maximise the RFQ transition, which can be 
reproduced online by maximising the beam current at 
RFQ exit. The online tuning is furthermore crucial at 
higher energies because the needed precision of 10-6 or 
even better is hard to ensure with theoretical calculations 
or machine reproducibility. The "halo matching" 
mentioned above can be applied in situ at the condition 
that enough microloss detectors are available along the 
SRF-Linac cryomodules, close enough to the beam pipe 
so that the loss distribution can be known with good 
enough spatial resolution. For that, neutron detectors by 
Chemical Vapour Deposition diamond is being evaluated 
in CEA-Saclay [3]. It is important to stress that these 
detectors, as well as the beam current monitor at RFQ exit 
should be used daily for fine tuning, and should be 
considered as "essential" as the classical beam position 
monitors for example. 

RESULTS AND DISCUSSIONS 
Separate beam dynamics optimisations for individual 

sections allow to find out the tunings where there is no 
loss in the LEBT, no microloss after the RFQ, while 
losses in the RFQ are mainly limited to low energy 
particles not correctly bunched nor accelerated. With 106 
macroparticles, the beam very external border is regular, 
far enough from the pipe wall. Start-to-end simulations 
without and with errors have been performed for the 
prototype accelerator [4]. 

Efforts have also been devoted to understand the 
physics of such high-intensity beams. It has been 
observed for example that once the external beam limit is 
perfectly minimised and regular along the MEBT and 
SRF-Linac, the emittance can sometimes literally blow 
up. A compromise is often necessary between halo and 
emittance minimisations. After careful examination, the 
emittance growths can be attributed to different 
mechanisms. 

At the MEBT and the first cryomodule entrance, (see 
Fig. 4, top) whenever the space-charge term is larger than 
the emittance term (resp. SC and Ex, Ey, see [2] for the 
definitions), meaning that the beam is space charge 
dominant, the emittance grows in the corresponding 
plane. We can also see at each time that the growing 
distance is about 0.90 m, which corresponds to the 
average length covered by the beam during a quarter of 
the plasma oscillating time. This is typical of the classical 
mechanism of charge redistribution when the beam leaves 
a strong focusing environment for a less strong one. Here, 

Figure 3: Tune depression in the RFQ and the SRF-Linac
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it occurs at the transition from the RFQ to the MEBT, 
then at the long transition without transverse focusing 
between the last MEBT quadrupole and the first 
cryomodule solenoid. 

This mechanism can also be clearly seen in the x-y 
beam density (Fig. 4, bottom) when looking at the 
importance of the maximum density (red area), or the 
projections in x and y (green line). When the beam has a 
large tail in a given plane, typical of a space charge 
dominated beam, that leads to emittance growth. When 
the beam has a much more compact profile, due to rapid 
charge redistribution providing shielding to the external 
focusing field, typical of an emittance dominated beam, 
the emittance growth is stopped. 

The emittance growths downstream do not present such 
behaviours. Coupling mechanisms should rather be 
invoked. Fig. 5 shows that whenever the x and z tune 
numbers are close to each other, there is transfer of 
horizontal emittance to vertical one. In [5], this resonance 
mechanism is studied in more details, and propositions for 
improvement are made. 

CONCLUSION 
In the study of very high-intensity IFMIF accelerators, 

new concepts have emerged like microlosses, halo 
matching, essential diagnostics. Every beam dynamics 
optimisation are carried out so that they can be 
reproduced online, in order to enhance the chance to 
obtain real performances as theoretically expected. 
IFMIF, with its record beam intensity, beam power, space-
charge regime and RFQ length, provides a tremendous 
opportunity for studying High Intensity Beam Physics in 
its most extreme limit.  
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Figure 5: Variation of emittance ratio and tune ratio along 
the MEBT and the 4 cryomodules of the SRF-Linac 

Figure 4: Variation of Ex,y and SC terms along the MEBT and the four cryomodules of the SRF-Linac (Top). The corresponding 
variation of emittance is also given (Centre). The beam presents remarkable behaviours (see text) at the positions z = 0.90, 1.95, 
2.80 m. Beam density in the x-y space, and its projection in x and y (green line), are given for z = 0 and those positions. Red is the 
densest and blue the less dense (Bottom). 
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