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Abstract

A serpentine acceleration in scaling FFAG accelerator
has been examined. In this scheme, high-energy and high-
current beam can be obtained in non-relativistic energy re-
gion. Longitudinal hamiltonian is also derived analytically.

INTRODUCTION

Recently, particle accelerators have been widely used not
only for particle physics [1] but also for many applications
such as nuclear power engineering [2]. Requests for high
beam power accelerator to produce intense secondary parti-
cle beams, in particular, are increasing. Linear accelerators
have been considered as a proper candidate so far. How-
ever it is expensive to construct and power comsumption.
An Alternative candidate is an FFAG ( fixed-field alternat-
ing gradient ) accelerator [3]. Since the guiding magnetic
field is static, the acceleration repetition rate only depends
on the capability of rf system. Thanks to this advantage, not
only producing high-energy and high-intensity beam but
also accelerating short-life particles, such as muons, can
be achieved with high repetition rate.

There are two types of FFAG accelerators; the non-
scaling type and the scaling type. The scaling FFAG ac-
celerator ring is composed of non-linear magnetic fields so
that the betatron tune is constant for every particle momen-
tam, contrary to the non-scaling FFAG accelerator.

Various methods of beam acceleration have been pro-
posed. In scaling FFAG accelerators, the beam accelera-
tion is usually realized with frequency modulation of the
rf system. With this acceleration scheme, the accelera-
tion repetition rate is limited by rf voltage and changing
speed of rf frequency. Another scheme is the stationary
bucket acceleration [4] where rf frequency is fixed. Since
cw operation becomes possible in this scheme, a large cur-
rent beam can be obtained. In stationary bucket accelera-
tion, however, the total acceleration energy gain is limited
by the bucket height, which limits this acceleration to the
relativistic energy region [5]. On the other hand, in non-
scaling FFAG accelerator, beam acceleration with fixed rf
frequency, called serpentine acceleration [6], has been con-
sidered. The beam has to cross the transition energy during
serpentine acceleration, that is to say the slippage factor has
to change sign. However, in order to minimize orbit shift
during acceleration, momentum compaction is chosen very
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small in non-scaling FFAGs. Consequence, only relativis-
tic particles (γ � 1) can be accelerated in this scheme.

Relativistic energy is suited for both type of FFAG ac-
celerators in acceleration with fixed rf frequency. How-
ever, serpentine acceleration can be also applied to the scal-
ing FFAG accelerator. In this case, high-energy and high-
current beam can be obtained in the non-relativistic energy
region as well.

In this paper, the longitudinal hamiltonian in scaling
FFAG accelerator is derived analytically, and the features
of serpentine acceleration and some applications based on
serpentine acceleration are also presented.

LONGITUDINAL HAMILTONIAN IN
SCALING FFAG

In cylindrical coordinates, the magnetic field in scaling
FFAG accelerator has the form:

Bz(r, z = 0) = B0

(
r

r0

)k

, (1)

where r is the radial coordinate with respect to the center of
the ring, B0 is the magnetic field at r0, k is the geometric
field index, and z is the vertical coordinate. The closed
orbits for different momenta are given by

r = r0

(
P

P0

) 1
k+1

, (2)

where r0 is the radius of the closed orbit at the momentum
of P0.

In longitudinal particle dynamics with constant rf fre-
quency acceleration in the scaling FFAG accelerator, the
phase discrepancy per revolution Δφ is written by

Δφ = 2π(frf · T − h), (3)

where h is the harmonic number, frf is the rf frequency and
T is the revolution period of a non-synchronous particle.
Equation3 becomes

T

Ts
=

(
r

rs

)/
P/E

Ps/Es
= P 1−α

s

E

Es
Pα−1, (4)

where Ts is the revolution period of a synchronous particle,
rs is the reference radius, α is the momentum compaction
factor and Es is the stationary energy. Below the transition
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energy, there is a stationary energy Es1. As the particle en-
ergy increases across the transition energy, there is another
stationary energy Es2. The phase difference becomes

Δφ = 2πh
(P 1−α

s

Es
EPα−1 − 1

)
. (5)

Now we exchange Δφ/2π and dφ/dθ to derive the phase
and energy equation of longitudinal motion,

dφ

dθ
= h

(P 1−α
s

Es
EPα−1 − 1

)
(6)

dE

dθ
=

eVrf

2π
sin φ, (7)

where Vrf is the rf voltage per turn and θ is an az-
imuthal angle in the machine. We introduce the energy
variable E canonically conjugate to the coordinate variable
φ. Equation.6 and 7 derive the longitudinal hamiltonian:

H(E, φ; θ)=h
( 1
α + 1

√
E2 − m2

α+1

Es

√
E2 − m2

α−1

s

−E
)
+

eVrf

2π
cosφ,

(8)
where m is rest mass of the beam particle.

Phase space in scaling FFAG

When both stationary energies Es1 and Es2 are far from
each other, two stationary buckets are separated as shown in
Fig.1. Approaching the two stationary energies each other,
a channel between two stationary buckets appears as shown
in Fig.2.

Figure 1: Longitudinal phase space. Two stationary buck-
ets are separated from each other.

Minimum RF voltage to make serpentine channel

The minimum rf voltage to make the acceleration chan-
nels is derived from Eq.8. As shown by Fig.3, the limiting
serpentine channel goes through two unstable fixed points
where H(Es1, π) equals H(Es2, 0).

H(Es1, π) = H(Es2, 0). (9)

Figure 2: Longitudinal phase space near the transition en-
ergy. There are two stationary buckets which are close to
each other.

From Eq.9 and the relation between Es1 and Es2;

Es1P
α−1
s1 = Es2P

α−1
s2 , (10)

the minimum rf voltage is derived;

Vrf = πh

[
1

α + 1

(
P 2

s1

Es1
− P 2

s2

Es2

)
+(Es2 − Es1)

]
. (11)

Equation11 shows that once the k value and the two sta-
tionary energies are given, the minimum rf voltage to real-
ize the serpentine acceleration can be calculated.

Figure 3: Two separatrix are close to each other, where γs1

corresponds to Es1 and γs2 corresponds to Es2.

APPLICATION

With serpentine acceleration in scaling FFAG acceler-
ator, a high current beam is generated by cw operations.
And also, total energy gain is larger compared with the sin-
gle stationary bucket acceleration. Furthermore, a fast ac-
celeration can be achieved. This is desirable for unstable
particles such as muons. In this section, some examples of
applications are shown; proton, muon and electron acceler-
ator.
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Parameters of a proton accelerator are summarized in
Table.1 where h is harmonic number. As shown in Fig.4,
injection kinetic energy is 380 MeV in longitudinal track-
ing. Injection phase is 0 rad. Final kinetic energy is
1.1 GeV.

Table 1: Proton case
Stationary Kinetic Energy 891 MeV
Mean radius (Stationary energy) 10 m
k value 2
rf voltage/turn 6 (h=1) MV
rf frequency 8.58 (h=1) MHz

Figure 4: Proton beam tracking in longitudinal phase space.
Hamiltonian contours are superimposed.

Parameters of a muon accelerator are summarized in
Table.2. As shown in Fig.5, injection kinetic energy region
is from 45 to 46 MeV in longitudinal tracking. Injection
phase range is from 2.2 to 2.5 rad. Final kinetic energy
region is from 1755 to 1955 MeV. In this scheme, a low en-
ergy muon beam can be accelerated to high energy within
a few turns. It shows a good expectation for the neutrino
factory or muon collider, in the future.

Parameters of an electron accelerator is summarized in
Table.3. As shown in Fig.6, injection phase range is from
2.5 to 2.6 rad in longitudinal tracking. Final kinetic energy
is over 10 MeV.

SUMMARY

In order to obtain high power beam with high repetition
rate, serpentine acceleration with constant rf frequency has

Table 2: Muon case
Stationary Kinetic Energy 845 MeV
Mean radius (Stationary energy) 10 m
k value 6
rf voltage/turn 250 (h=1) MV
rf frequency 4.7 (h=1) MHz

Figure 5: Muon beam tracking in longitudinal phase space.
Hamiltonian contours are superimposed.

Table 3: Electron case
Stationary Kinetic Energy 4.69 MeV
Injection energy 200 keV
Mean radius (Injection energy) 0.37 m
k value 4.45
rf voltage/turn 680 (h=1) kV
rf frequency 75 (h=1) MHz
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Figure 6: Electron beam tracking in longitudinal phase
space. Hamiltonian contours are superimposed.

been proposed for the scaling FFAG accelerator. Longitu-
dinal hamiltonian has been derived analytically. In order to
demonstrate the serpentine acceleration in scaling FFAG,
the experiments will be taken soon.
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