

ILC Status

Time line

SCRF status

Test Facilities

Design Improvement

Summary

Kaoru Yokoya IPAC2010 May.26.2009, Kyoto

Jun 26, 2010

RDR (Reference Design Report)

- RDR published in summer 2007
 - First cost estimation
 - Accelerator
 - Civil engineering
 - Explicit labor

4.79BILCU(=US\$2007)

1.83

14.2 kperson-year

Detectors

Accelerator **Exec Summary Physics** GDE re-structured since then for the next milestone

– 3 Project Managers

IIL

Reference Design Repo

ILC/GDE Timeline

ilr iit

- Technical Design Report
 - It will be a detailed technical report
 - Sufficient to give reliable estimate of the total cost
 - Ready for construction proposal to governments
 - But will not be a complete engineering document
 - Planned to be completed by the end of 2012
- Technical Design Phase
 - TDP1 till Jul.2010 (ICHEP at Paris)
 - Critical R&D
 - Risk mitigation
 - Cost reduction
 - New baseline

– TDP2 till end of 2012

- Technical design
- Project implementation plan

ilc

GDE SCRF Plan

- SC(Superconducting)RF technology is the key to ILC
- SCRF issues
 - S0: cavity
 - S1: Cryomodule
 - S2: Module string
 - Industrialization

Calendar Year	2007	2008	2009	9 2	010	2011	2012
Technical Design Phase		TDP-1			TDP-2		
Cavity Gradient R&D to reach 35 MV/m		Process Yield > 50%		Production Yield >90%			
Cavity-string test: with 1 cryomodule		Global colla For <31.5 MV/m>		ıb.			
System Test with beam 1 RF-unit (3-module)		FLASH	(DESY)			STF2 (KE NML (FNA	EK) 📫

ilc

S0: Cavity Gradient

- Cavity gradient is a big, single cost-driver
- RDR assumes >35MV/m (Q_0 >1x10¹⁰) in vertical test
- Target of cavity yield during TDP
 - Yield > 50% in TDP1
 - Yield > 90% in TDP2
 - Should be revisited in Rebaseline
- Cavity Global Database Team established last summer
 - Uniform, well-controlled database
 - Definition of the standard cavity processing
 - `Production Yield' = (# of)/(# of produced cavities)
 - Up to 2nd pass
 - Cavities to be included in the statistics
 - `Established vendor'
 - No R&D cavities such as Large Grain
 - Condition of X-ray should be added soon

Present Production Yield

- Simple criterion >35MV/m \rightarrow 44% yield
- Improved HLRF system can accept cavity gradient spread ~20% \rightarrow 64% yield (27.9-41.8MV/m, average 36.5MV/m)
- TDP1 target satisfied

Electropolished 9-cell cavities

Electropolished 9-cell cavities

Locating the Defects

- Techniques to locate the defects inside cavities are by now common in the world
 - Pass-band mode measurement
 - Temperature map
 - Optical inspection
- Try&error \rightarrow science

IIL

Detailed Surface Analysis

- Make a replica
- Accurate measurement of the shape
- Computer simulation of the field enhancement

İİĻ

Cause of Gradient Limitation

Electropolished 9-cell cavities

Local Repair: Grinding

Grinder for equator

ΪĹ

Grinder for slope surface

Labs	Method	Cavity name	Results
DESY	Local Grinding (KEK)	AC71	26MV/m (string???) -> 30 MV/m
FNAL	Local Grinding (KEK)	AES-03	20 MV/m (Bump, scratch) -> 34 MV/m
JLAB	Local Grinding (KEK)	JLAB LG-01	30 MV/m (Pit) -> will be tested.
KEK	Local Grinding(KEK)	MHI-08	16 MV/m (Pit) -> 27 MV/m

S1-Global

Goals

- Try average gradient > 31.5 MV/m
- Demonstrate plug-compatibility
- Assemble cavities from DESY-FNAL-KEK in KEK-STF
 - All cavities and cryostat (1 from INFN) sent to KEK. Now assembling.
- Operation to finish by the end of 2010

Cryogenic system

Module C

Module A

Jun 26, 2010

Jun 26, 2010

K.Yokoya, IPAC2010, Kyoto

S1-Global Module C (DESY, FNAL cavities)

S1-Global Test Plan

Month	Subjects	Participation
5	Assembly to be complete	
6	Cool-down,Low Power Test	IHEP
7	Low Power Test & Tuner Function Test Preliminary Cryog. Performance test	INFN, FNAL
8	Input coupler conditioning	
9	Re-cool-down High Power Test for Cryomodule C	FNAL, SLAC,
10	High Power test for Cryomodule A Cryogenic Performance Test	FNAL,
11	Control, LLRF, total-system dynamic loss Cryomodule heat loads at 2K DRFS preparation,	
12	DRFS test using S1-Global setup	

;|r iic

- System test with
 - high-gradient, fully beam-loaded, full LLRF control, high rep rate
- Necessary in each region (Asia, Europe, Americas)
- Europe
 - FLASH
 - XFEL
- US
 - FNAL-NML
- Japan
 KEK-STF2

• Fully beam-loaded, high gradient, LLRFcontrolled experiment

•Successful long-time (>10hr) operation at 3mA

IIL

•Short time at >6mA

•Almost satisfies S2

Energy Stability (examples)

FLASH RF gradient drift

|||

FNAL-NML (New Muon Lab)

- Synergy with Project-X
- First module
 - Fabricated at DESY (TTF type III+)
 - Assembled in FNAL
 - Cooling test is going to start
- 2nd module
 - US cavities
 - To be built in 2010
- CM3-CM6

Cryomodule activities at FNAL

K.Yokoya, IPAC2010, Kyoto

Jun 26, 2010

ilc.

KEK-STF2

- First module test (STF1) completed in 2008
 - Half size (4 cavities)
 - Max gradient ~30MV/m (1 cavity)
 - Measurement successful
- STF2
 - Injector 2011 to early 2012 (with beam)
 - 1st 9 cavity module to be completed by end of 2012

Compact Light Source accelerator in STF Phase 2

ilc.

Industrialization

- Success of S2 does not mean ready for production
- Scale of projects

	# of cav	/s period	production rate
Euro-XFEL	800	2yr	1 cav/day
Project-X	400	~3yr	2 cavs/week
ILC	16000	~4yr	7 cavs/day (3 regions)

- Exceeds the present capacity of any company
- Multiple vendors in each region desired
- Must consider: quality control, mass-production, cost reduction
- Industry session last Sunday at Kyoto

	vendors	laboratories
Europe	RI (ACCEL)	DESY, LAL(Orsay),
	Zanon	CEA(Saclay), INFN
Americas	AES, Niowave,	FNAL, ANL, Cornell, JLAB
	PAVAC	
Asia	MHI	KEK, IHEP, PKU, RRCAT,
	(HITACHI, Toshiba)	IUAC

Cavity Pilot Plant at KEK

Prototype for the future production line

IIL

- Main part is EBW facility
- Cost reduction
- Need more companies to join
- EBW to be delivered Mar.2011

Damping Rings

Critical issues

IIL

- Emittance tuning
 - \rightarrow KEK-ATF, CESR-TA
- Fast injection/extraction kickers
 - Bunch-by-bunch extraction needed
 - Rise/fall time < 6ns required
 - → test at KEK-ATF
- − Electron cloud
 → CESR-TA

Kicker Stability

Kick angle jitter - ~4x10-4 → satisfies ILC requirement

- Remaining problem
 - Pulse-to-pulse timing jitter
- Next study in June

1ns/div

10

15

20

PulseNumber

361

360

0

5

35

30

25

CESR-TA

- Electron cloud is one of the highest risk factor for ILC
- Study at CESR started in 2008
 - Evolution of electron clouds under various cloudmitigation techniques
 - chamber coatings (TiN, alpha carbon)
 - clearing electrodes
 - grooved chambers

can be monitored in various magnetic fields: drift, dipole, quadrupole, wiggler

- Reconfiguration of CESR needed
- Beam parameters are not identical to ILC
 - Extrapolation with computer simulation is needed

CHESS C-line & D-line Upgrades Windowless (all vacuum) x-ray line

Dedicated optics box at start of

Detectors share space in CHESS

L0 region reconfigured as a **CLEO detector sub-systems**

6 wigglers moved from CESR arcs

Region instrumented with EC diagnostics and mitigation

Wiggler chambers with retarding analyzers and various EC methods (fabricated at LBNL in CU/SLAC/KEK/LBNL collaboration)

ΪĿ

ilc...

- Reconfiguration complete
 - BPM upgrade, xBSM, 4ns feedback
 - new EC chambers (electrodes, grooves, a-C coating, RFA detectors,
 - Solenoid windings
- Status
 - Emittance ε_v~20pm
 - EC mitigatión comparisons progress
 - EC simulations

From M.Palmer, PAC, May2010

- Future plans
 - ~70 machine development days scheduled in 2010 May, July, September and December experimental periods. Will focus on:
 - LET effort to reach a target emittance of ey≤ 20pm
 - Continued EC mitigation studies
 - Detailed characterization of instabilities and sources of emittance dilution in the ultra low emittance regime
 - Application of our results to the damping rings design effort
 - An extension to the R&D program has been proposed...
 - ILC DR Electron Cloud Working Group in Oct.2010

ilc.

ATF2

- Miniature of ILC Final Focus
 - Same optics system as ILC
 - Tolerances similar to ILC
 - International project
 - Funding
 - manpower
- Goals
 - 1st step: Beam size < 35nm</p>
 - IP BSM (beamsize monitor) needed
 - 2nd step: Stability of the beam centroid < 2nm
 - IP BPM (beam position monitor) (<2nm) needed
 - IP feedback system
 - ILC format beam from ATF
- Beam line construction started in 2005 and completed in December 2008

ATF2 Status

- Goal 1
 - Beam size reached ~300nm
 - Target: 37nm by end of 2010

- IPBPM being tested upstream
- Laser wire tested in Apr.
- FONT5 showing progress

Design Improvement

- Revisit the baseline design
 - Cost optimization
 - Balance of cost and risk/performance
- Cost is an important issue for big projects
 - Should not exceed the cost estimation in RDR
 - Should prepare for the possible cost increase, e.g., cryomodule, cavity gradient, etc. (waiting for info of XFEL cavity cost)

SB2009

- **Single tunnel** with new RF distribution system:
 - KCS (Klystron Cluster System)
 - DRFS (Distributed RF System)
- Half number of bunches (1312) with same pulse length (1ms) → reduce RF system to half
- Half circumference of DR (same bunch interval in DR)
- Single-stage bunch compressor (minimum bunch length 300µm)
- Positron
 - undulator at linac end
 - Use QWT (Quarter Wave transformer) in capture section
- Traveling focus
- Layout of central region with shorter tunnel length
- Expected total cost reduction ~13%

ic

Single Tunnel

- Packing all component in RDR in single tunnel will cause significant increase of machine down time (XFEL adopts single tunnel but modulators are on the surface)
- Revision of RF distribution system is needed
 - KCS (Klystron Cluster System)
 - DRFS (Distributed RF system)

Klystron Cluster System

Each tap-off from the main waveguide feeds 10 MW through a high power window and probably a circulator or switch to a local PDS for a 3 cryomodule, 26 cavity RF unit (RDR baseline).

- Power station on surface every 2km
- ~30 klystrons (10MW MBK) in a station
- Output microwave combined (~300MW) and sent to underground by overmoded wave guide (~48cm)
- Distributed to modules by coaxial tap-offs.
- Need R&D of high power system
- Developed at SLAC

IIL

ir iic

DRFS

- Feed 2 (or 4) cavities by a klystron (~750kW)
- Present scenario
 - 1 klystron for 4 cavities (SB2009)
 - 1 modulator for 26 cavities with back up
- Flexible distribution
- Issues are maintenance and cost
- Being developed at KEK
 - First test planned at the end of S1-Global
 - Capture cavities for STF2
 - STF2 will be driven by DRFS

Reduced Number of Bunches

- Number of bunches 2600→1300 with same pulse length (~1ms)
 → half current in linac
 → RF system half
- Allows half size damping rings (same bunch interval in the ring)
 - \rightarrow ~6km \rightarrow ~3km
 - Electron-cloud : almost the same
 - Update to ~2600 bunches is harder
 - Experience of e-cloud needed
 - Fast kicker
- Need to squeeze more the beam at IP for the same luminosity

- Replace flux concentrator with Quarter Wave Transformer (less efficient but safer)
 - \rightarrow longer undulator (=230m), higher target load \rightarrow target R&D
 - Continue R&D of flux concentrator
- Place undulator at linac end (250GeV point)
 - Simpler machine protection system
 - Complex systems concentrated in the central region
 - Allows low acceleration gradien of linac at low energies
 - No deceleration
 - Higher positron yield at high energy (>300GeV CM)
 - But poor yield below 300GeV CM
 - (~half at 250GeV)

ilc.

Luminosity

- Bunch number reduction would cause factor 2 reduction of luminosity → squeeze more tightly
- Further reduction at low energies due to the new location of undulator (factor 2 at 250GeV CM)
- Can be cured in principle by `traveling focus' (at the expense of higher sensitivity on collision offset), but it does not work at low energies due to larger geometric emittance
- → factor of 3-4 reduction from RDR value at 250GeV CM.

Travelling Focus $\beta^* < \sigma_z$

Recovery of Luminosity at Low Energies

- At low energies the machine repetition rate (5Hz) can be raised owing to the low site power consumption
 - Requires stronger wigglers in damping rings but this seems to be feasible
 - Must revisit entire system
- The final focus quadrupoles can be modified for low energy collision to make traveling focus effective
 - Shorter magnet can focus the beam
 - Detailed design needed

116

Towards Re-baseline

- New baseline must be decided by early 2011 to be in time for TDR
- Four major issues
 - A) Accelerating gradient
 - **B)** Single tunnel (with new RF distribution)
 - C) Half number of bunches
 - **D) Undulator**
- BAW (Baseline Assessment Workshop)
 - BAW1 Sep.2010 @KEK A&B
 - BWA2 Jan.2011 @??? C&D

IIL

Collaboration with CLIC

- Collaboration of the two linear colliders groups, ILC and CLIC, is desirable with respect to synergies and saving resources
- Collaboration is going on in several fields
 - General Issues
 - CFS (Conventional Facility & Siting)
 - Positron Source
 - Damping Ring
 - BDS (Beam Delivery System)
 - Cost Estimation
 - Detectors

- Discussion launched among the management levels of ICFA, ILCSC, and GDE.
- What sort of organization needed for ILC Lab
 - Models (CERN, ITER, XFEL,....)
 - Budget model
 - In-kind contribution
 - Common fund
- Site selection procedure

Beyond TDR

Technical issues

Possible remaining R&D issues

- RF distribution, positron
- System tests (most important: S2)
- Industrialization
 - Cost reduction
 - Mass-production
- Engineering design
- Project implementation plan
 - Governance
 - Siting

116

- GDE is on the track to TDR in 2012
- Progress in SCRF technology and evaluation of cavity yield
- Efforts for industrialization growing
- Test facilities, CESR-TA, ATF/ATF2, FLASH, etc, contributing to risk mitigation
- Re-baseline is being planned through BAW (Baseline Assessment Workshops) by early 2011.