

Status and Performance of BEPCII

Qing Qin For the BEPCII Team IHEP, Beijing 100049, P.R. China

Contents

- Introduction on BEPCII
- Linac Status and New Upgrades
- Commissioning of Storage Rings
- Operation of BEPCII
- Discussions and Summary

1. Introduction of BEPCII

RF

SR RF

BEPCII — An upgrade project of BEPC
— A double-ring factory-like machine
— Deliver beams to both HEP & SR

Ist I.R. Experi. Hall
Ist I.R. Experi. Hall
Power Station of RingMag. Computer Center
RF Station

5. 2nd I.R. Experi. Hall

6. Tunnel of Trans.Line

Tunnel of Trans. Line
Tunnel of Linac
Klystron Gallery
Nuclear Phy. Experi. Hall
Power Sta. of trans. Line
East Hall for S.R. Experi.
West Hall for S.R. Experi.
Computer Center

2010-05-26

Chinese Academy of Science

Design Goals of BEPCII

Collision Mode

- Beam energy range
- Optimized beam energy
- Luminosity
- Full energy injection

SR Mode

- Beam energy 2.5 GeV
- Beam current 250 mA
- Keep the present beam lines useable

Upgrade of BEPC: One machine, two purposes (HEP, SR)

1-2.1 GeV 1.89 GeV 1×10³³ cm⁻²s⁻¹ @1.89 GeV 1-1.89 GeV

Accelerator -- Three Rings Structure

Chinese Academy of Science

The Milestones

January 2004	Construction started
May. 4, 2004	Dismount of 8 linac sections started
Dec. 1, 2004	Linac delivered e ⁻ beams for BEPC
July 4, 2005	BEPC ring dismount started
Mar. 2, 2006	BEPCII ring installation started
Nov. 13, 2006	Phase 1 commissioning started
Aug. 3, 2007	Shutdown for installation of IR-SCQ's
Oct. 24, 2007	Phase 2 commissioning started
Mar.28, 2008	Shutdown for installation of detector
June 24, 2008	Phase 3 commissioning started
July 19, 2008	First hadron event observed
May 19, 2009	Luminosity reached 3.3×10 ³² cm ⁻² s ⁻¹

2. Linac Status and New Upgrades

Sub-harmonic buncher system installed

Output of one bunch

Chinese Academy of Science

- Problems exist:
- Phase drift from the SHB's frequency signal generator
- Temperature control of the thermostatic chamber of the signal generator

• Further improvement is needed.

3. Commissioning of Storage Rings

Beam optics and its realization

Institute of High Energy Physics Chinese Academy of Science

Design Parameters of Ring (Col. Mode)

Energy	GeV	1.89
Circumference	m	237.53
Beam current	Α	0.91
Bunch number		93
Bunch current	mA	9.8
Bunch spacing	m	2.4
Bunch length	cm	1.5
RF frequency	MHz	499.80
Harmonic number		396
Emittance (x/y)	nm⋅rad	144/2.2
β function at IP (x/y)	m	1.0/0.015
Crossing angle	mrad	±11
Design luminosity	cm ⁻² s ⁻¹	1 x 10 ³³

- Optics Correction
- Beam based alignment to get BPM offset
- Orbit distortion correction based on the measurement of response matrix
- LOCO applied to get fudge factors of quadrupoles

Difference between the measured and the model response matrices with LOCO

Optics Correction (cont'd)

- Measured beam optics functions are in good agreement with theoretical prediction with discrepancy within ±10% at most quadrupoles,
- ✓ Design v_x/v_y = 6.54, 5.59, measured v_x/v_y = 6.544, 5.559
- Quadrupole strengths systematically 1~2% lower than design set:
 - 1) Interference between adjacent Quadrupole and sextupole
 - 2) fringe field effect.
 - 3) Other origin of these errors is still pursued.

 In phase 3 of commissioning, the detector solenoid effect was compensated.

• Local correction to the SCQs near IP.

2010-05-26

Beam Injection

To reduce the residual orbit oscillation of the stored beam =>set the right timing and amplitude of the two kickers.

- $\Rightarrow \mbox{After optimization with on bunch,} \\ \mbox{the residual orbit oscillation of all} \\ \mbox{the bunches during injection} \\ \mbox{reduced to around } 0.1 \mbox{mm}/0.1 \mbox{\sigma}_{x.} \end{tabular}$
- \Rightarrow Injection on collision possible

Beam Injection

Scan e⁻/e⁺ orbit Step for tuning orbit < 1µm

🡙 Eile Edit Mindow

Scan RF phase to get the vertical crossing angle

Institute of High Energy Physics Chinese Academy of Science

Angle tuning at IP

β*-waist tuning

Seminar at LNF

On-line tune scan for two rings

5.64 5.64 80 5.63 5.63 100 -00 **\$**0 60 100 5.62 5.62 5.61 80 80 5.61 5.60 120 5.60 -00 -100 100 5.59 5.59 5.58 6.52 6.53 6.56 6.51 6.53 6.54 6.55 6.57 6.51 6.52 6.54 6.55 6.57 6.56

Scan BPR

2009-12-10

Seminar at LNF

Institute of High Energy Physics Chinese Academy of Science

Scan BER

A bunch-by-bunch "lengthening" in BPR observed

BER: 420mA/70 bunches

BPR: 386mA/70 bunches

Institute of High Energy Physics Chinese Academy of Science

Quadrupole oscillations of head and tail of e- and e+ bunch train

Quadrupole oscillations of head and tail of e- and e+ bunch train

Source of the impedance: the temporary screen monitor in BPR

	Frequency	Q	R	R/Q	Field decay time
Model	(GHz)				(ns)
Small cavity	1.8171	2256.9	86160	38.1774	198
Vacuum pump	2.3432	8335.6	4579	0.54933	556

Difference from the BER and BPR!

Simulation on beam oscillation in longitudinal

Moving tunes close to half integers

 $v_x \rightarrow 6.51$ (nominal), 6.508(meas.)

BPR: $\beta_v^* \sim 1.38$ cm (measured)

$v_v \rightarrow 5.58$ (nominal), 5.587(meas.)

BER: $\beta_v^* \sim 1.33$ cm (measured)

Seminar at LNF

Institute of High Energy Physics

Chinese Academy of Science

Main parameters achieved in collision mode

parameters	design	Achieved		
		BER	BPR	
Energy (GeV)	1.89	1.89	1.89	
Beam curr. (mA)	910	650	700	
Bunch curr. (mA)	9.8	>10	>10	
Bunch number	93	93	93	
RF voltage	1.5	1.5	1.5	
* v _s @1.5MV	0.033	0.032	0.032	
β_x^*/β_y^* (m)	1.0/0.015	~1.0/0.0135	~1.0/0.0135	
Inj. Rate (mA/min)	200 e ⁻ / 50 e ⁺	>200	>50	
Lum. (× 10^{33} cm ⁻² s ⁻¹)	1	0.33		

Luminosity with 80 bunches collision

 Longitudinal feedback system was installed in both rings in last summer to cure the longitudinal dipolar oscillation.

- Grow/damp at 182.4 mA;
- Growth rate of 0.1 ms⁻¹ growth time of 10 ms;
- Fast damping of 0.66 ms⁻¹ (1.5 ms damping time);
- Eigenmode 63 is unstable;
- 50+ data sets to analyze at currents from 135 to 182 mA.

Courtesy J.H. Yue and D. Teytelman

Chinese Academy of Science

2010-05-26

Courtesy J.H. Yue and D. Teytelman

Growth Rates: e⁺ (Continued)

- Four trains, 59 bunches total;
- Threshold estimated quite nicely;
- Extrapolate to 0.98 ms⁻¹ at 1 A;
- Clear difference from one train fill pattern.

Courtesy J.H. Yue and D. Teytelman

Effect of longitudinal feedback

Beam-beam Issue

Achieved beam-beam limit

Reasons of beam-beam limit:

- Crossing angle at the IP (11mrad×2)
- Not high bunch current (9.8mA in design)

Problems met during luminosity commissioning

Background of detector

- 2 horizontal moveable masks installed, each for one ring, ~8m upstream from the IP.
- They reduced ~50% of the beam-related background.

Main Time Axis (CST)

2010-05-26

0.02

0.01

0.00

25

n

05-16-09 21h 05-16-09 22h 05-16-09 23h 05-17-09 00h

05-17-09 01h 05-17-09 02h 05-17-09 03h 05-17-09 04h 05-17-09 05h 05-17-09 06h 05-17-09 07h

Detector dark current measurement

Source of background:

- Beam-gas scattering --- vacuum needs to be improved
- Touschek scattering --- beam optics needs to be modified
- Other sources?

4. Operation of BEPCII

• Running for HEP (ψ(2S) , J/ψ, ψ(3770))

Primary physics results of BESIII

- Confirmation of BESII results
 - threshold enhancement γppbar, γωφ, X(1835), ...
- New improved measurements
 - $-\mathbf{h}_{c}, \eta_{c}, \chi_{cJ}, \dots$
- New observations
 - $-\chi_{cJ}$ decays
 - h_c decays
 - Light hadrons, …

Three papers published

Many in memo stage

Observation of h_c in ψ (2S) $\rightarrow \pi^0$ h_c,h_c $\rightarrow \gamma \eta_c$

Phys.Rev.Lett. 104(2010) 132002

Courtesy Y.F. Wang

Running for SR

Dedicated SR mode

- Running with parasitic mode
- Beam collision with a wiggler on
- Luminosity tuning with the wiggler on

Deliver beam to HEP and SR users simultaneously!

HOMs heating problem

- 1) More than 1000 thermal couplers used
- 2) Display in colour according dangerousness: green, yellow and red.
- 3) In most case, the temperature rise (SR) => flux of cooling water adjusted

Bad contact of the RF finger in the shielding of bellows caused HOM heating, vacuum leakage in April 2009.

- Replace the new bellows
- Re-design the RF fingers of the shielding
- Cooling water and wind for the new bellows
- Restrain the bunch current and beam current $(I_b < 6mA, \Sigma I < 550mA)$

Kicker problem (ceramic board broke in Mar. 2010)

Beam experiment to determine the problem

5. Discussions and Summary

- Commissioning and more stable running of Linac are necessary.
- 1/3 of the design luminosity reached, further studies are needed.
- The dark current of detector limits the beam current right now, and needs to be improved.

- Normal measures:
- ✓ Increase bunch current, beam current
- ✓ Shorten bunch spacing, to get more bunches
- \checkmark Squeeze β_{y}^{*}
- ✓ Tunes closer to half integers

Possible peak luminosity: L ~ 4 – 5×10³²cm⁻²s⁻¹

Issues on the ways of further upgrades

- Heating of bellows, vacuum chamber, etc.
- Background when bunch current increases
- Possible ECI after bunch current increases or bunch spacing shortening
- Longitudinal instabilities after bunch spacing shortening
- Etc, etc.

Long term upgrade of the BEPC-II

- Crab-waist for higher luminosity
- Collision with polarized beam
- ✓ Physics requirement
- Possibility of realization (e- beam? Location for rotators? Other solutions?)
- ✓ Budget
- ✓ Other problems…

- Commissioning team of BEPCII
- Colleagues from BNL, LBNL, INFN-LNF, KEK, and SLAC
- All others from labs around world...

Thanks for your attentions!

