Recent Developments of the Bunch Arrival Time Monitor with Femtosecond Resolution at FLASH.

M. K. Bock¹, M. Felber¹, K. Hacker¹, P. Gessler¹, F. Ludwig¹, B. Schmidt¹, H. Schlarb¹, S. Schulz^{1,2}, L. Wissmann², J. Zemella¹

¹Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

²Institute of Experimental Physics Hamburg University, Germany

IPAC - Beam Instrumentation & Feedback - May 26th 2010

(日) (同) (日) (日)

Laser-based Synchronisation Infrastructure at FLASH.

Locations of Bunch Arrival Time Monitors (BAM)

イロト イポト イヨト イヨ

Laser-based Synchronisation Infrastructure at FLASH.

Locations of Bunch Arrival Time Monitors (BAM)

• 1. Generation: BAM 4DBC3 and 18ACC7

イロト イポト イヨト イヨ

Laser-based Synchronisation Infrastructure at FLASH.

Locations of Bunch Arrival Time Monitors (BAM)

- 1. Generation: BAM 4DBC3 and 18ACC7
- 2. Generation: BAM 1UBC2 installed in 2009

(日) (同) (三) (三) (三)

Laser-based Synchronisation Infrastructure at FLASH.

Locations of Bunch Arrival Time Monitors (BAM)

- 1. Generation: BAM 4DBC3 and 18ACC7
- 2. Generation: BAM 1UBC2 installed in 2009
- 3. Generation: BAM 3DBC2 installed May 2010

			Y.

Overview

Laser-based Synchronisation Infrastructure at FLASH.

Locations of Bunch Arrival Time Monitors (BAM)

- 1. Generation: BAM 4DBC3 and 18ACC7
- 2. Generation: BAM 1UBC2 installed in 2009
- 3. Generation: BAM 3DBC2 installed May 2010
- 4. Generation: BAM 1SFELC scheduled for 2011

Bunch Arrival Time Measurement.

Operating Principle & Design

Bunch Arrival Time Measurement.

Operating Principle & Design

Bunch Arrival Time Measurement.

Bunch Arrival Time Measurement.

Fibre-Optical Layout - Recent Design Changes

Design 2. Generation

- self-spliced Polarisation Maintaing Fibre Section
- 2 Erbium-doped Fibre Amplifiers (EDFA)
- uncompensated fibre length in total: $\approx 5m$

イロト イヨト イヨト イヨト

• distance FRM - EOM 1: $\approx 3.5m$

Fibre-Optical Layout - Recent Design Changes

Design 2. Generation

- self-spliced Polarisation Maintaing Fibre Section
- 2 Erbium-doped Fibre Amplifiers (EDFA)
- uncompensated fibre length in total: $\approx 5m$
- distance FRM EOM 1: $\approx 3.5m$
- temperature drift of SMF: 60 fs/K/m

Fibre-Optical Layout - Recent Design Changes

Improvements compared to 1.Generation

- custom motorised stage suited for high-duty cycles
- temperature regulation using peltier elements:

イロト イヨト イヨト イヨト

40 mK peak-to-peak over 8 hours 100 mK peak-to-peak over a few days

Fibre-Optical Layout - Recent Design Changes

Improvements compared to 1.Generation

- custom motorised stage suited for high-duty cycles
- temperature regulation using peltier elements:

40 mK peak-to-peak over 8 hours 100 mK peak-to-peak over a few days

Design Issues

- EDFA in uncompensated fibre section
- uncompensated fibre too long
- long fibre sections complicates assembly

イロト 不得下 イヨト イヨト

Fibre-Optical Layout - Recent Design Changes

3. Generation BAM - Improvements

<ロ> (日) (日) (日) (日) (日)

Fibre-Optical Layout - Recent Design Changes

- 3. Generation BAM Improvements
 - only one EDFA, compensated for timing drifts

Fibre-Optical Layout - Recent Design Changes

- 3. Generation BAM Improvements
 - only one EDFA, compensated for timing drifts
 - shortened PM fibre section: FRM EOM 1: $\approx 1.5m$

Fibre-Optical Layout - Recent Design Changes

- 3. Generation BAM Improvements
 - only one EDFA, compensated for timing drifts
 - shortened PM fibre section: FRM EOM 1: $\approx 1.5m$
 - improved fibre management

BAM Signal Scans

Shift 1.3 GHz phase of reference laser pulse to sample RF pick-up signal

 coarse channel BAM 3: attenuated signal by -30 dB

BAM Signal Scans

Shift 1.3 GHz phase of reference laser pulse to sample RF pick-up signal

- coarse channel BAM 3: attenuated signal by -30 dB
- coarse channel BAM 4: attenuated signal by -19 dB

- The second sec

BAM Signal Scans

Shift 1.3 GHz phase of reference laser pulse to sample RF pick-up signal

- coarse channel BAM 3: attenuated signal by -30 dB
- coarse channel BAM 4: attenuated signal by -19 dB
- fine channel BAM 3: power limiter, no attenuator

イロト イポト イヨト イヨ

BAM Signal Scans

Shift 1.3 GHz phase of reference laser pulse to sample RF pick-up signal

イロト 不得下 イヨト イヨト

all signals from 3 BAMs

BAM Signal Scans

Shift 1.3 GHz phase of reference laser pulse to sample RF pick-up signal

- all signals from 3 BAMs
- all signals aligned at same reference phase of 197 ps = 92 deg (1.3GHz):

イロト 不得下 イヨト イヨト

adjust RF cable lengths adjust motorised stages

Arrival Time Measurement in Injector Section of FLASH.

Bunch Arrival Time at Entrance of 1st Bunch Compressor

PRELIMINARY

Injector Timing Measurement.

Optical Cross-Correlator & Bunch Arrival Time

Summary & Outlook.

Electro-Optical Bunch Arrival Time Monitors at FLASH

Current Status

- 4 BAMs are currently installed & commissioned at FLASH
- successive improvements in design and performance

Outlook

- 5th BAM scheduled for 2011
- major change in upcoming design review: reduce total fibre length eliminate mechanical stress on movable fibres
- further improve read-out electronics
- continue preparation for switching from VME crates to new crate standard: μ TCA

(日) (同) (三) (三)

Outlook.

Beam Based Feedback Implementation

system focusses on reliability & robustness, compared to previously demonstrated experiments 1

イロト 不得下 イヨト イヨト

 $¹_{\,\rm F.}$ Löhl, et al. Phys. Rev. Lett.,Volume 104, Issue 14, 144801