- IPAC-10, Session for Industry —

Experience of Academia-Industry Collaboration on Accelerator Technologies and Projects in Asia

Akira Yamamoto KEK

To be reported the IPAC-2010, Kyoto, May 26, 2010

Outline

- Introduction
 - Overview of Accelerators for Research and Medial Applications in Asia
- Academia and Industry Collaborations
 - Status in China, Korea, India, and in Japan
- Advanced Accelerator Association, Japan
 - Cooperation among "Industry-Academia-Government" to promote science and technology
- Summary
 - Toward Asian Collaboration for future projects

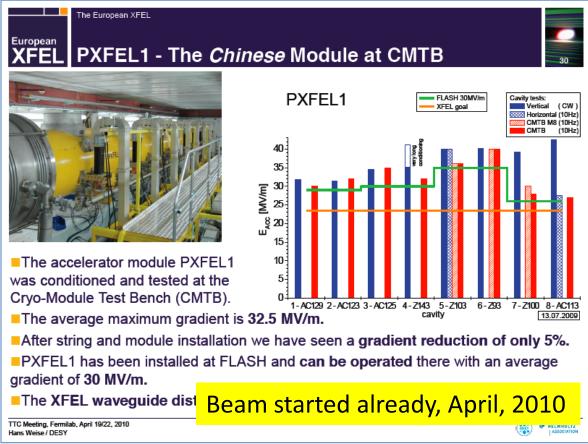
Acknowledgments

- Many thanks for the information provided by
 - Jie Gao (IHEP, China),
 - Chuangxian Tang (Tsinghua U., China)
 - Kexin Liu (PKU, China)
 - Eun-San Kim (KNU, Korea)
 - Amit Roy (IAUC, India) ,
 - Lyn Evans (CERN), and
 - Other Many Collaborators

Research and Medical (proton/Heavy-Ion) Particle Accelerators in Asia

Academia-Industry Collaboration in Particle Accelerators

	Research	Medical	Notes on Academia-industry Collaboration
China	IHEP, SSRF	山東、蘇州(Beijing, Shanghai)	In-house fabrication Collaboration Increasing
China-Taiwan	NSRRC	NSRRC	
Korea	Pohang/POSTECH PEFP, KNU and	Soel	Inevitable
India	IUAC, RRCAT, TIFR, VECC		In-house fabrication Some particular cases
Japan	KEK, RIKEN, Spring-8, Universities	NIRS Tsukuba, Nt'l CC, Shizuoka, Gunma,	Inevitable and close collaboration
Jordan	SESAME		
Thailand A, Yamamoto, 10-05-26	NSRC Asian	Experience	5


Outline

- Introduction
 - Overview of Accelerators for Research and Medial Applications in Asia
- Academia and Industry Collaborations
 - Status in China, Korea, India, and in Japan
- Advanced Accelerator Association, Japan
 - Cooperation among "Industry-Academia-Government" to promote science and technology
- Summary
 - Toward Asian Collaboration for future projects

China: IHEP Contribution FLASH/XFEL-Prototype Cryomodule

Cryomodule/Cryostat
Manufactured by
航天晨光股份有限公司
(Airspace CHEN GUANG
company limited) under
Supervision of IHEP
In cooperation with INFN/LASA

Courtesy: Jie Gao (IHEP)

Reported by H. Weise at TTC, FNAL, April 19, 2010.

A, Yamamoto, 10-05-13 ILC-PAC: SCRF Report 7

IHEP SCRF Cavity Development

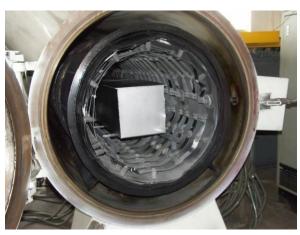
 SCRF cavity fabricated at IHEP in cooperation with 'Beijing Institute of Aviation Materials'

A, Yamamoto, 10-05-26

Courtesy: Jie Gao (IHEP)

Peking University SCRF Cavity Development

EBW: Cooperation with Harbin Institute of Technology


Courtesy: Kexin Liu (PKU)

细晶腔系列

PKU, IHEP Collaboration w/ Industry, on Nb Sheet

 Cooperation with Ningxia Orient Tantalum Industry to develop Nb material, high temperature annealing for cavities, to develop accelerator cavities in future.

Tsinghua University

Low Energy Electron Linac Development as a Fabricator for Medical Applications

TW 10MeV Linac BJ-10

SW 6MeV Linac WDVE-6

SW 14MeV Medical Linac

SW 20MeV Linac with ES

Certesy: Chuanxian Tang (Tsinghua Univ.)

Korea: Pohang Acc. Lab/POSTECH Pohang Light Source Upgrade

PLS Upgrade PLS-1 → PLS-2

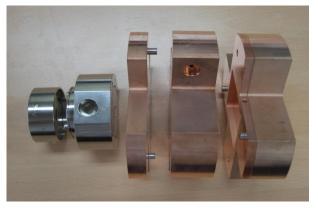
Ring energy 2.5 GeV 3 GeV

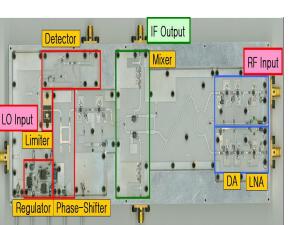
Ring emittance 18.9 nm 5.7 nm

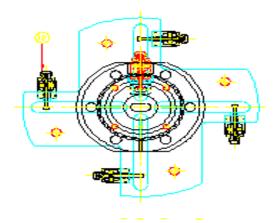
Number of ID 10 20

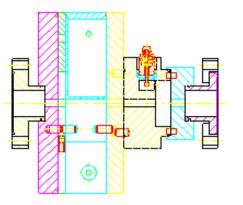
Linac energy 2.5 GeV 3 GeV

XFEL (Plan 2011-2015)

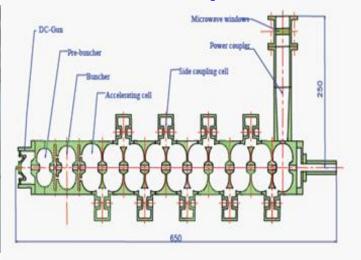

- 10 GeV S-band Linac (~ 550 m long)
- ~60 m undulator w/ gap of 5.3 mm

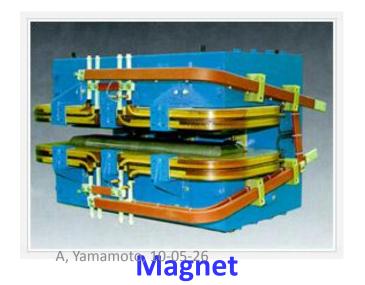

Courtesy: Eun-San Kim

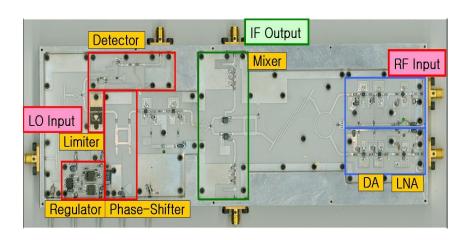

KNU


beam diagnostics with industry

Several Industrial Manufacturing at Korea

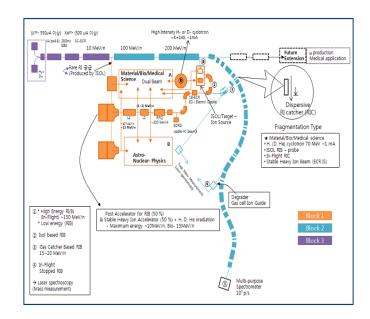

DTL




RFQ

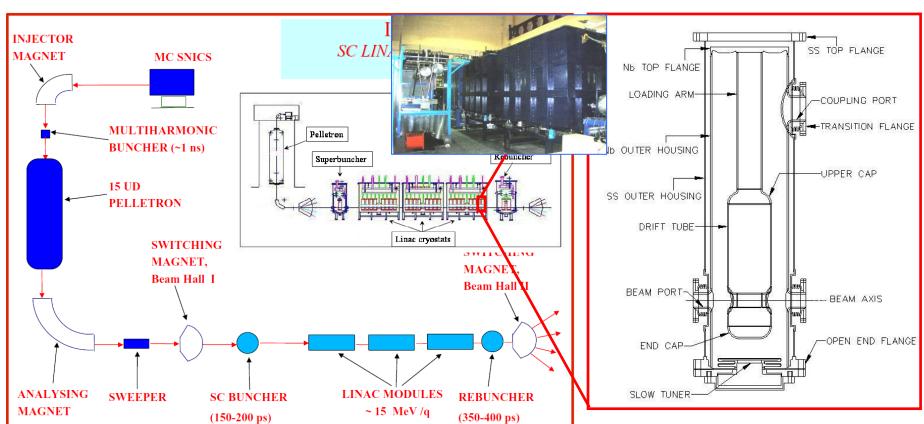
S-band RF system

Heavy-ion Accelerators (Plan)


Industry collaboration expected

Research (Nuclear Physics)

- Rare Isotope Accelerator
- 200MeV/n SCRF linac + In-Flight
- 200 MeV proton cyclotron + ISOL
- Beam current: U : 2pμA
- 2010 -2015 (CDR stage at present)


Medical Application

- ☐ Carbon beam: 400 MeV/n
- Consists of Linac and Synchrotron
- ☐ Period : 2010 2015
- Location : Pusan

India: IUAC

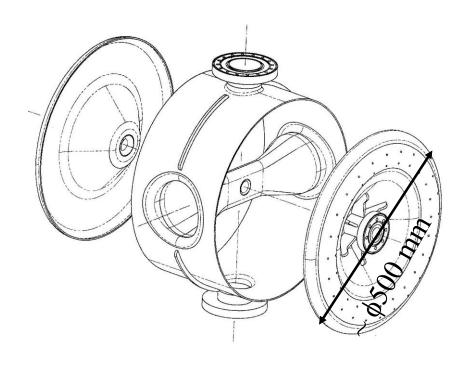
SCRF Cavity In-house Effort: QWRs for Linac

12 QWRs + 15 Slow Tuners were ready by Aug./Sept. 2009. 3 QWRs to be ready by June 2010.

Nb Quarter Wave Resonator.

Courtesy: Amit Roy (IUAC)

IUAC In-House Cavity Facility



12 QWR fabricated

EP set-up

Collaborations – IUAC & Fermi Lab

Single Spoke Resonator – SSR1 (niobium portion) for Project-X at Fermi National Accelerator Laboratory, USA. $\beta = 0.22$, f = 325 MHz

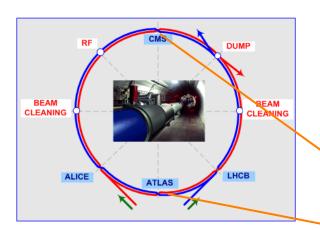
IUAC is presently fabricating two Single Spoke Resonators.

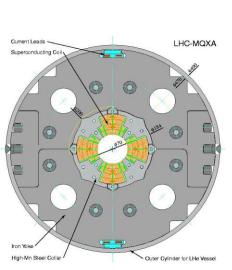
Collaboration – RRCAT & IUAC with Fermilab

- RRCAT, Indore & IUAC in collaboration have fabricated two Tesla-type <u>Single</u> <u>Cell Cavities</u> with niobium.
- The plan is to eventually build a complete 9-Cell Cavity.
- All the tooling for the fabrication has been built at RRCAT. Several fixtures have been built in consultation with IUAC.
- IUAC facilities (EBW, SPL etc.) have been used for the fabrication.
- Presently the Cavities are at Fermi Lab for further processing and cold testing.
 - One of the Cavities has been electropolished & rinsed (HPR) at ANL and undrgone cold test.
 Achieved 21 MV/m on first cooling.

1.3 GHz Tesla-type Niobium Single Cell Cavity

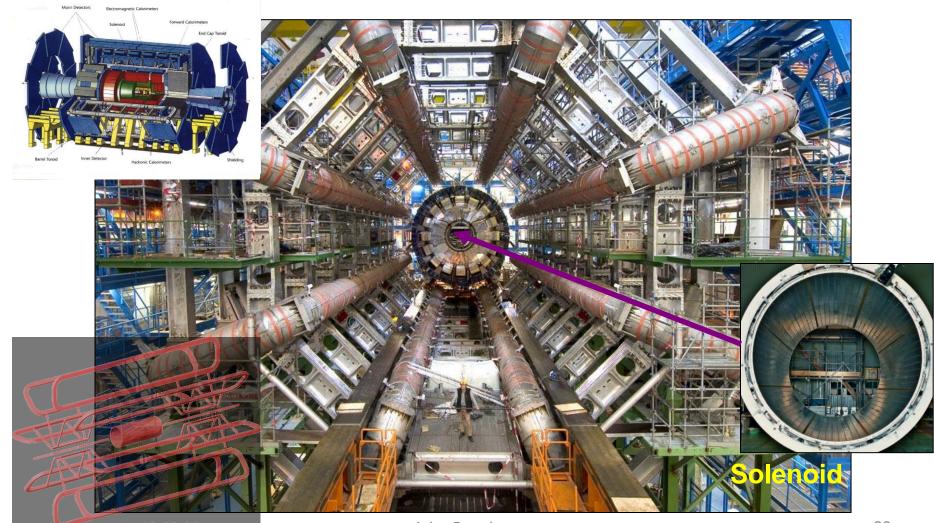
Japan: KEK, RIKEN, Spring-8, HIMAC and others...





JPARC: Tokai Cam

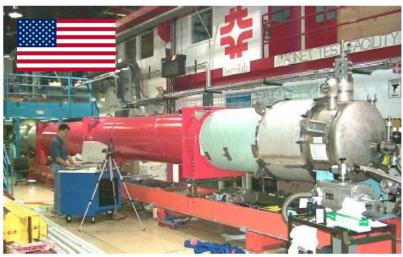
CERN-LHC Inner Triplet CERN, Fermilab KEK, Industry Collaboration

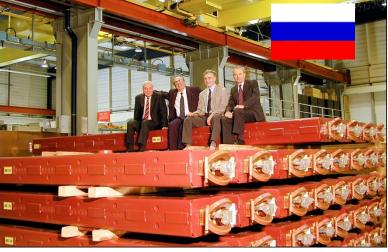


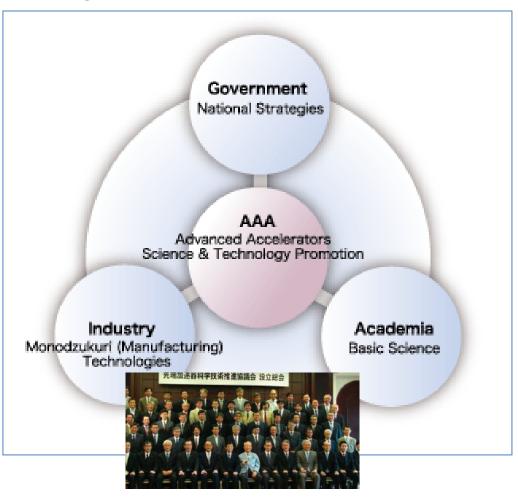
CERN, FERMILAB, & KEK Collaboration with Cooperation with Japanese Industries

ATLAS Superconducting Solenoid

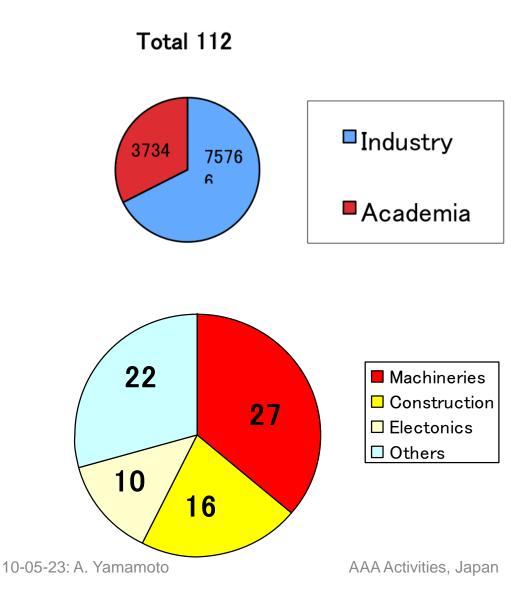
CERN-KEK collaboration with Japanese Industries




Contribution from Asia for LHC as part of global collaboration



Outline


- Introduction
 - Overview of Accelerators for Research and Medial Applications in Asia
- Academia and Industry Collaborations
 - Status in China, Korea, India, and in Japan
- Advanced Accelerator Association, Japan
 - Cooperation among "Industry-Academia-Government" to promote science and technology
- Summary
 - Toward Asian Collaboration for future projects

AAA: Advance Accelerator Association established, Japan, in 2008

- In collaboration of
 - Industries
 - Government, and
 - Academia
- Thanks for previous effort by "Linear Collider Forum, Japan"
 - as a preliminary step, in collaboration between
 - Industries, and
 - Academia
 - Special acknowledgment for Mr. N. Ozaki (Chairing this session)

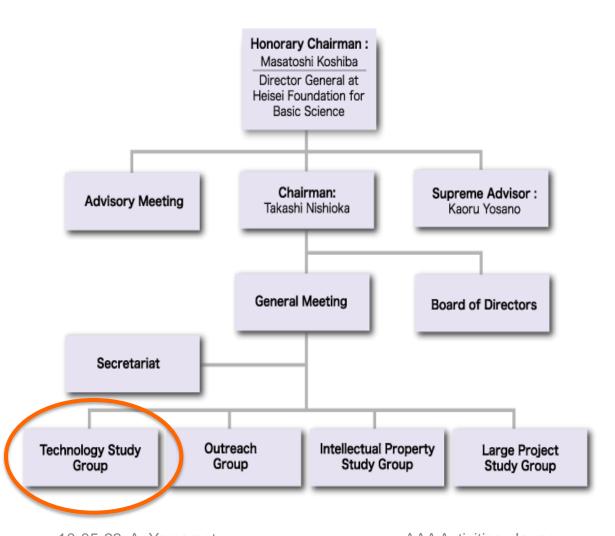
AAA Member as of April, 2010

【 Academia 】 KEK RIKEN

JAEA

Tokyo University
Tohoku University
Kyoto University, and
Others

[Industries]


M H I
Toshiba Co.
Hitachi Ltd
Mitsubishi Electric Co
KASHIMA Co
IBM Japan , KYOCERA
TEPCO, and
Others

AAA motivated to

- Promote science and technology with joint effort with Industries-Government-Academia cooperation,
- Seek for and create industrial applications of advanced accelerator technologies, in such fields of
 - Advanced material, biotechnology, medical use, and various innovative applications

28

Organization and Activities

Group Activities:

- Technologies
- Outreach
- Intellectual Properties
- Large Projects

Technology Group Activities

Organization

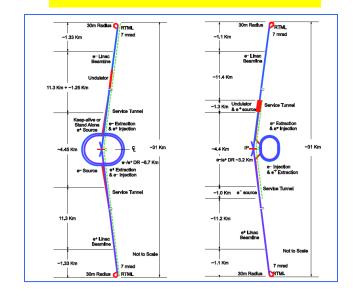
- Steering in cooperation of academic organization and industries
 - Composed with KEK and Industries

Activities:

- Lectures/Seminar Series
- Working groups:
 - Superconducting Accelerator Technology
 - Conventional Facilities

Lectures and Seminars in every moth

#	Dates	Focusing	Themes
1	2008-08-29	Basic	Introduction for Advance Accelerator
2	08-09-16	Basic	Status of SC Accelerator Technology and Prospect
3	08-10-08	Basic	Accelerator and Conventional Facility Technology
4	08-10-29	Basic	Superconducting RF Cavity Technology
5	08-11-12	Basic	High-Legel RF Technology
6	08-12-19	Appl.	Adv. Accelerator and Synchrotron Radiation Science
7	09-01-14	Basic	Adv. Accelerator and Cryogenic Engineering
8	09-02-18	App1.	Adv. Accelerator and Neutron Science
9	09-03-18	Basic	Adv. Accelerator and Control/Instrumentation
10	09-05-13	App1.	Industrial technology and application supporting A. Acc.
11	09-07-27	Basic	General activity reports
12	09-10-28	App1.	Adv. Accelerator and Medical Application
13	10-02-10	App1.	Adv. Accelerator and Laser Science and Application
14	10-04-15	Project	ILC R&D Progress and Prospects


As a core study theme:

ILC: SCRF-ML Technology

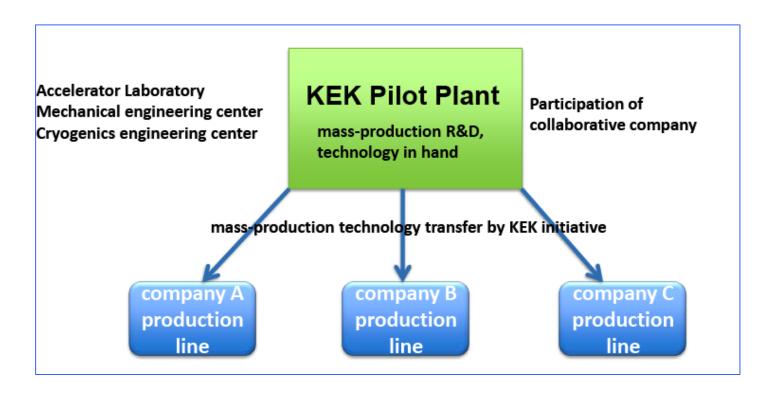
RDR Parameters	Value				
C.M. Energy	500 GeV				
Peak luminosity	2x10 ³⁴ cm ⁻² s ⁻¹				
Beam Rep. rate	5 Hz				
Pulse time duration	1 ms				
Average beam current	9 mA (in pulse)				
Av. field gradient	31.5 MV/m				
# 9-cell cavity	14,560				
# cryomodule	1,680				
# RF units	560				

RDR → SB2009

Global Plan for SCRF R&D

Year	07	200	8	2009	2	010	2011	2012
Phase	TDP-1		P-1			TDP-2		
Cavity Gradient in v. test to reach 35 MV/m		→ Yield 50%			Yield 90%			
Cavity-string to reach 31.5 MV/m, with one-cryomodule	Global effort assembly and (DESY, FNAL, INFN		y and	test	ring			
System Test with beam acceleration		FLASH (DESY), NML (FNAL) STF2 (KEK, test start in 2013)						
Preparation for Industrialization					Prod		n Techn R&D	ology

Superconducting Accelerator Technology WG:


Studying Industrialization and the R&D model

WG	#	Dates	Subjects
SC	WG1	09-04-08	Nb material,
			Surface cleaning
SC	WG2	09-06-04	Ceramics
			Electron Beam Welding
SC	WG3	09-09-10	Cavity fabrication
SC	WG4	10-01-14	Cavity surface polishing
SC	WG5	10-5-20	Cavity fabrication: pressing and blanking

Outlook from SC Acc. Tech. WG (recmmendation): Industrialization study: Cavity Fabrication R&D Facility

Industrialization of Cavity Fabrication

R&D Facility to be established

Based on a recommendation given by AAA in cooperation of industry - academia

Summary

- Industry-Academia Collaboration critically important to open a door to realize future, energy/power frontier particle accelerators
- We may need to:
 - First, Create new industrial applications including medical, power, material, biotechnology, transportation, and various application, the
 - Then, Realize a true 'International Particle Accelerator Collaboration' ---- IPAC!