

The 1st International Particle Accelerator Conference Kyoto, Japan / May 23-28, 2010

Accelerators Application for Basic and Applied Research at JINR

I.Meshkov, A.Sisakian, G.Trubnikov

JINR, **Dubna**

Contents

Introduction: JINR and its accelerator facilities

- **1. Phasotron and medical applications**
- 2. Cyclotrons at FLNR
- 3. IREN Intense REsonance Neutron Source
- 4. Nuclotron-M & NICA project
- 5. Radiobiology research at JINR


Conclusion

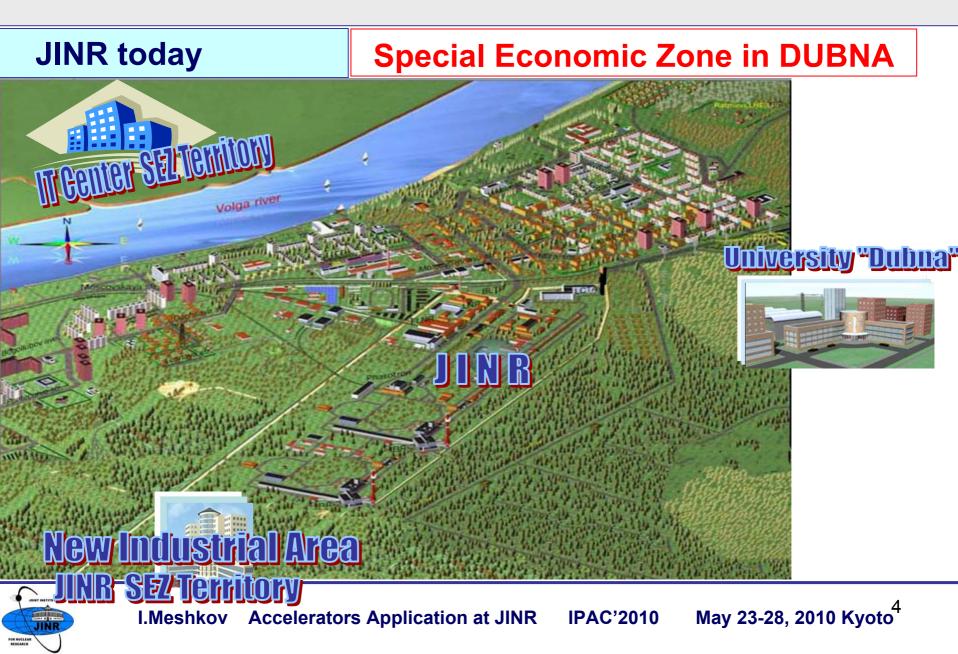
Introduction: JINR and Its Accelerator Facilities

JINR today : International intergovernmental organization

- 18 Member States
- 6 Associated Members States
- about 700 research partners in 60 countries
 staff members ~ 5500

Three Pillars of JINR:

□ Basic research in high energy and nuclear physics, condensed matter physics and radiobiology;


□ Education programme;

Applied research based on achievements in basic research.

Special Economic Zone in DUBNA

Introduction: JINR and Its Accelerator Facilities

Introduction: JINR and Its Accelerator Facilities

Synchrocyclotron

SC Proton Synchrotron

I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto⁵

1. Phasotron and medical applications

I.V.Kurchatov and V.P. Dzhelepov

Machine parameters: Protons

□ 660 MeV

2.2 μA – slow extraction,

 3 μA – fast extraction Synchrocyclotron "Phasotron" The First Accelerator in Dubna Constructed in frames of the Soviet Atomic Project, commissioned in 1949, still in operation

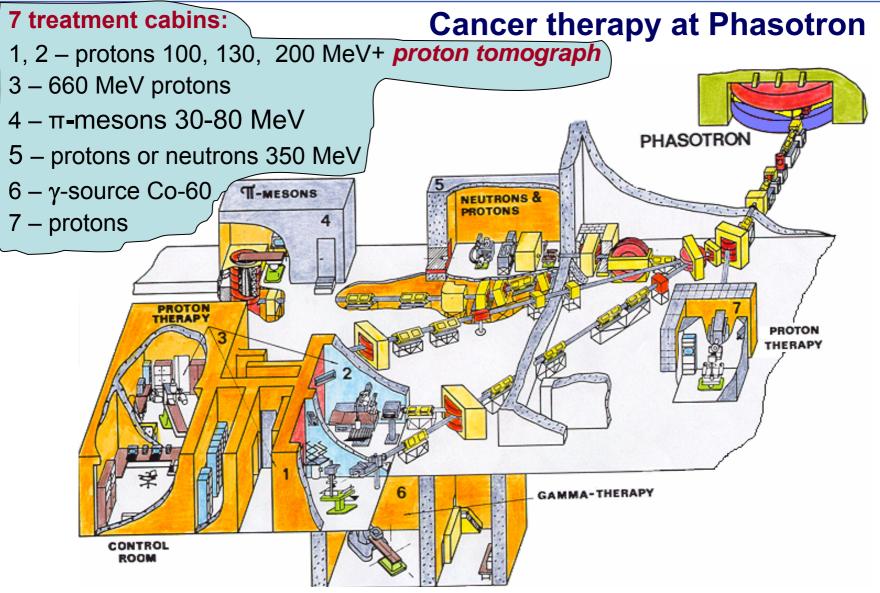
M. G.Meshcheryakov

Research program:

✓ Muon-catalysis
 ✓ Pion & muon
 physics

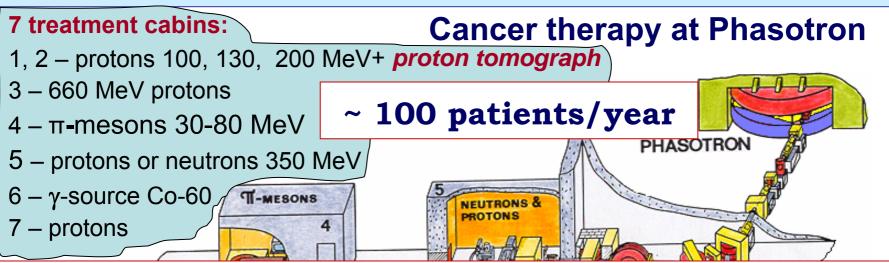
✓ Nuclear

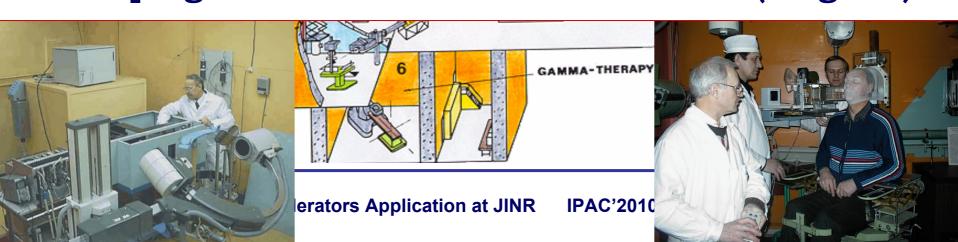
physics


Main application:

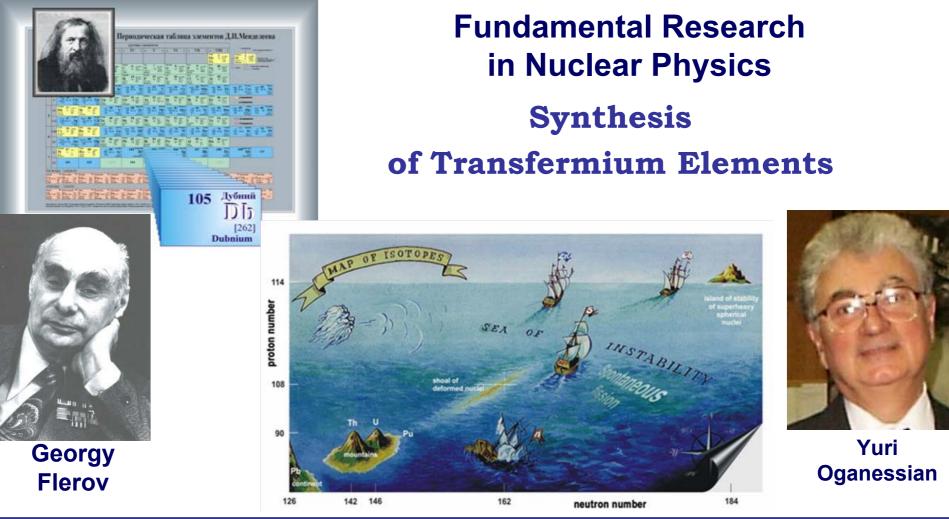
Cancer therapy

I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto⁶


1. Phasotron and medical applications



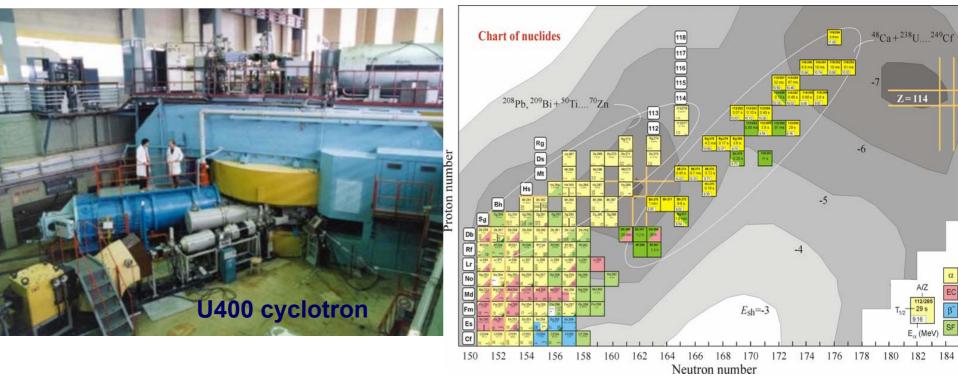
I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto⁴


1. Phasotron and medical applications

Presently design and construction of dedicated cyclotrons for cancer therapy is in progress in collaboration with IBA C^o (Belgium)

2. Cyclotrons at Flerov Laboratory of Nuclear Reactions

I.Meshkov Accelerators Application at JINR IPAC'2010

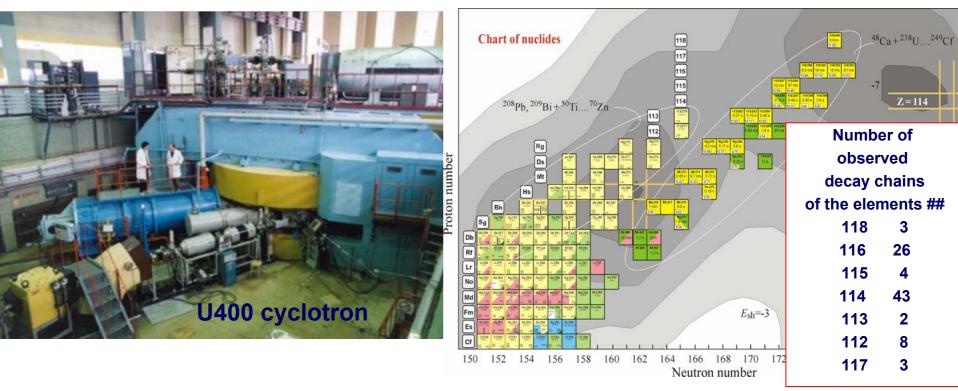

May 23-28, 2010 Kyoto⁹

Fundamental Research in Nuclear Physics

For the last decade JINR has become one of the leading scientific centres in the world in low energy heavy-ion physics.

Synthesis of Transfermium Elements

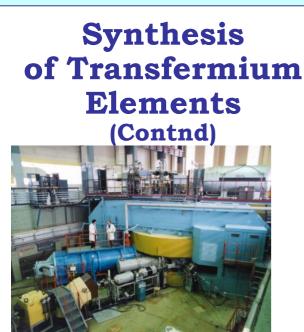
(Contnd)


I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto

Fundamental Research in Nuclear Physics

For the last decade JINR has become one of the leading scientific centres in the world in low energy heavy-ion physics.

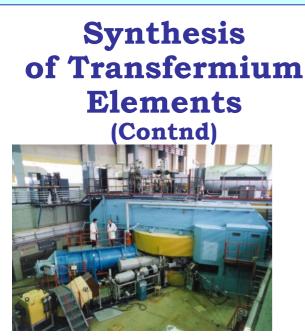
Synthesis of Transfermium Elements


(Contnd)

I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto

Fundamental Research in Nuclear Physics

U400 Beam Parameters


Ion	Energy,	Cui	rent
	MeV/amu	mcA	10 ¹² pps
⁷ Li ¹⁺ , ⁶ Li ¹⁺	16.6	30	60
¹¹ Li ²⁺	16.6	33	40
$^{12}C^{2+}, ^{13}C^{2+}$	14.4	35	30
¹⁴ N ²⁺	9.4	35	30
¹⁴ N ³⁺	20.3	35	30
¹⁸ O ³⁺	19.3	35	25
²⁰ Ne ⁴⁺	20.9	35	20
²² Ne ⁴⁺	17.8	35	20
³⁶ S ⁶⁺	15	25	9
⁴⁰ Ar ⁸⁺	19.9	35	10
⁴⁸ Ca ⁵⁺	5.3	22	7
⁴⁸ Ca ⁹⁺	19	10	3
⁸⁶ Kr ⁹⁺	5.1	10	2
¹³⁶ Xe ¹⁴⁺	4.4	0.2	0.03

I.Meshkov Accelerators Application at JINR

IPAC'2010 May 23-28, 2010 Kyoto¹²

Fundamental Research in Nuclear Physics

U400 Beam Parameters

The projectile for synthesis of the elements 113-118

I	on	Energy,		Current		nt
		MeV/amu	m	cA	1	0 ¹² pps
⁷ Li ¹⁺ ,	6 Li 1+	16.6	3	0		60
¹¹ Li ²⁺		16.6	3	3		40
¹² C ²⁺	¹³ C ²⁺	14.4	3	5		30
¹⁴ N ²⁺		9.4	3	5		30
¹⁴ N ³⁺		20.3	3	5		30
¹⁸ 0 ³⁺		19.3	3	5		25
²⁰ Ne ⁴	+	20.9	3	5		20
²² Ne ⁴	+	17.8	3	5		20
³⁶ S ⁶⁺		15	2	5		9
⁴⁰ Ar ⁸	+	19.9	3	5		10
48Ca	⁴⁸ Ca ⁵⁺	5.3	22	7		7
<mark>≁⁴⁸Ca⁹</mark>	⁴⁸ Ca ⁹⁺	19	10	3		3
⁸⁶ Kr ⁹	+	5.1	1	0		2
¹³⁶ Xe	14+	4.4	0.	.2		0.03

May 23-28, 2010 Kyoto¹³

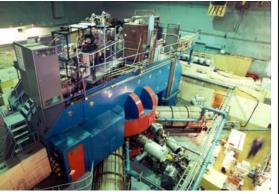
Synthesis of Super-Heavy Elements (Contnd)

Year	Discovered element	Laboratory
1963	102 No – Nobelium ^[1]	FLNR
1961/1965	103 Lr – Lawrencium ^[1]	LBNL/FLNR
1966/1969	104 Rf – Rutherfordium ^[1]	FLNR/LBNL
1970/1971	105 Db – Dubnium ^[1]	FLNR/LBNL
1974	106 Sg – Seaborgium ^[1]	LBNL/LLNL
1981	107 Bh – Bohrium ^[1]	GSI
1984	108 Hs – Hassium ^[1]	GSI/FLNR
1982	109 Mt – Meitnerium ^[1]	GSI
1994	110 Ds – Darmstadtium ^[2]	GSI

^[1] Priority has been defined in 1993 (*Pure & Appl. Chem.,* Vol. 65, No. 8, p. 1757,1993)

^[2] Priority has been defined in 2003 (*Pure & Appl. Chem.,* Vol. 75, No. 10, p. 1613, 2003)

Synthesis of Super-Heavy Elements (Contnd)


Year	Discovered element	Laboratory
1994	111 Rg – Roentgenium ^[3]	GSI
1996	112 Cn – Copernicium ^[4]	GSI
2004	113 no name ^[5]	FLNR / RIKEN
1998	114 no name ^[5]	O allah anations
2004	115 no name ^[5]	Collaboration: FLNR & RIAR (Dmitrovgrad)
2000	116 no name ^[5]	& ORNL & LLNL &
2010	117 no name ^[5]	Vanderbilt University
2002	118 no name ^[5]	

^[3] Priority has been defined in 2004 (*Pure & Appl. Chem.,* Vol. 76, No. 12, p. 2101, 2004)
 ^[4] Priority has been defined in 2009 (*Pure & Appl. Chem.,* Vol. 81, No. 7, p. 1331, 2009)
 ^[5] Priority is not defined yet

U400M and Light Radioactive Nuclei Studies

U400M cyclotron parameters

Ion	Energy,	Current	
	MeV/amu	mcA	10 ¹² pps
⁷ Li ²⁺	35	30	60
¹¹ B ³⁺	32	30	40
¹² C ⁴⁺	47	35	40
¹⁴ N ⁴⁺	35	35	30
¹⁴ N ⁵⁺	54	15	15
¹⁸ O ⁵⁺	33	30	25
²² Ne ⁶⁺	32	15	10
²² Ne ⁷⁺	43	15	10
³⁶ S ¹⁰⁺	33	1.7	0.6
⁴⁰ Ar ¹²⁺	40	2	0.7
⁴⁸ Ca ¹⁰⁺	20	1.7	0.5

U400M and Exotic Nuclei Studies

ACCULINNA fragment separator

G. Ter-Akopian et al.

2002 – 2003: search for ⁵H and ⁷H resonances with RIB's of ⁶He & ⁸He,

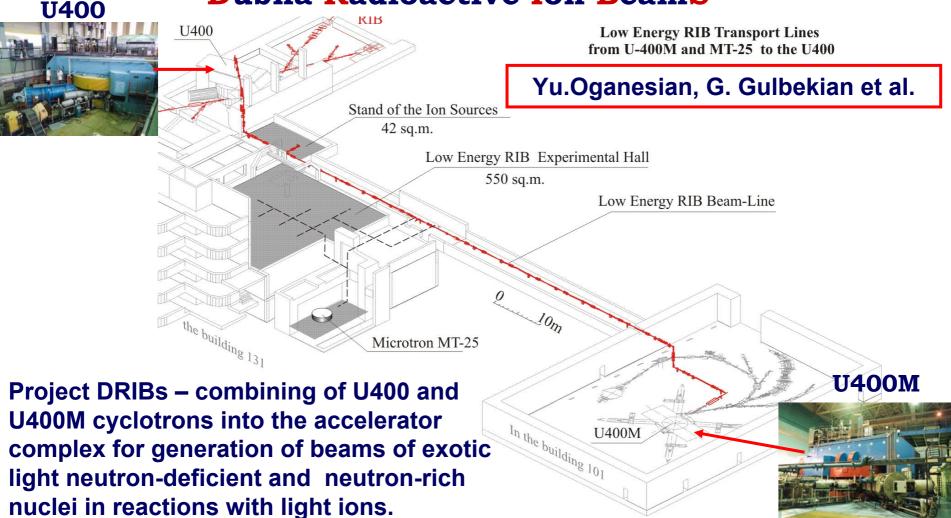
cryogenic ²H & ³H targets, reactions :

 $^{6}\text{He} + {}^{2}\text{H} => {}^{5}\text{H} + {}^{3}\text{He}$ ${}^{3}\text{H} + {}^{3}\text{H} => {}^{5}\text{H} + p$

⁸He + ²H => ⁷H + ³He

2009 - 2010: RIB's generation and R-nuclei structure studies of ¹⁰He, ¹²He & ¹³Li

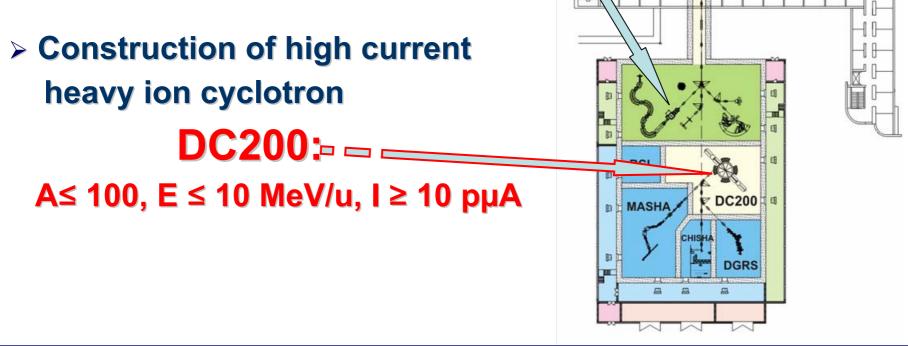
Primary beams: ¹⁸O and ¹⁵N, 48 MeV/amu, 1 pmA (6·10¹² pps) Beryllium target


(2 mm), Secondary beams:

¹¹Li (2·10³), ¹²Be (6·10⁴), ¹⁴Be (1·10³), ¹⁵B (5·10⁴), 35 MeV/u

¹¹ Li + ² H => ¹⁰ He + ³ He (200/month)	¹² Be + ¹² C => ¹⁰ He + ¹⁴ O (50/month)		
¹¹ Li + ³ H => ¹³ Li + p	¹⁴ Be + ¹² C => ¹² He + ¹⁴ O		

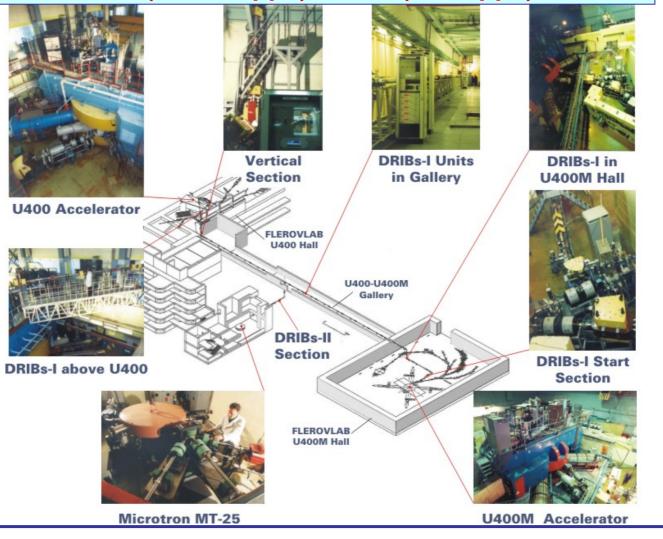
The Project DRIBS: Dubna Radioactive Ion BeamS


May 23-28, 2010 Kyoto¹⁸

U400

variant 22

DRIBs-III (2015)


- Modernization of U400M & U400 cyclotrons
- > Construction of the new experimental hall (≈ 2600м²)
- Construction of next generation set-ups

Fundamental Research in Nuclear Physics

DRIBS-I parameters (2008): ⁷Li (1.9·10¹³ pps) ⇒ ⁶He (5·10⁷ pps)

I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto

IC-100 Cyclotron Beam Application

Production of:

track membranes with cylindrical pores of the diameter of 5 mcm – 0.05 mcm at the pore density of 10⁶ - 3.10⁹ per cm²;

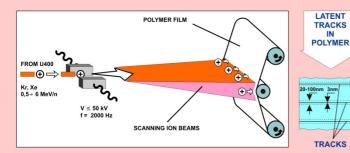
track membranes of the new types corresponding to the requirements of the Life Science applied to the production of new medications and biologicals;

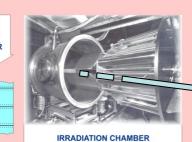
metal nano-structures (e.g. nano-wires and submicron pipes) on the basis of pattern technology;

ion-implantation synthesis of nano-size cluster structures in the solids.

Accelerator Based Applied Research and Technology

Cyclotron IC-100		
Ions	Energy [MeV/amu]	Intensity [pps]
²² Ne ⁴⁺		1.1E12
⁴⁰ Ar ⁷⁺		2.23E12
⁸⁶ Kr ¹⁵⁺		1.46E12
127 I 22+	1.0 - 1.2	0.71E11
¹³² Xe ²³⁺		1.0E12
182 W 32+		2.9E9
184 W 31+		0.7E10

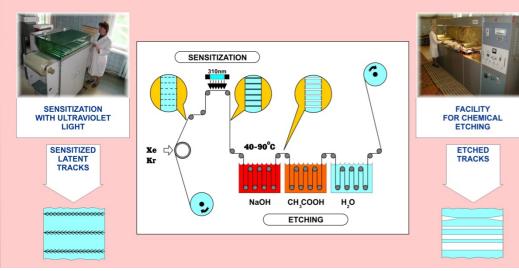



I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto²²

2. Cyclotrons at FLNR Accelerator Based Research and Technology

Track membrane production technology

I. IRRADIATION WITH ACCELERATED HEAVY IONS



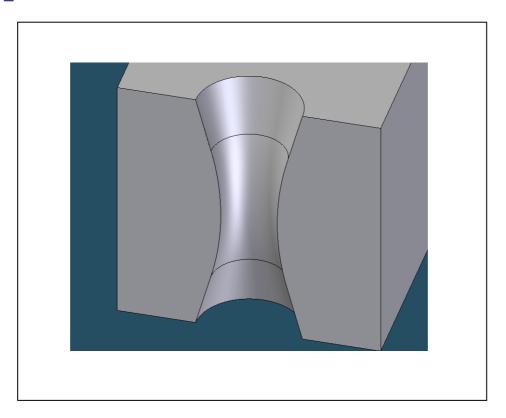
P. Apel et al.

II. SENSITIZATION AND CHEMICAL ETCHING

Chamber for polymer films irradiation

Maximum film width: 60 cm

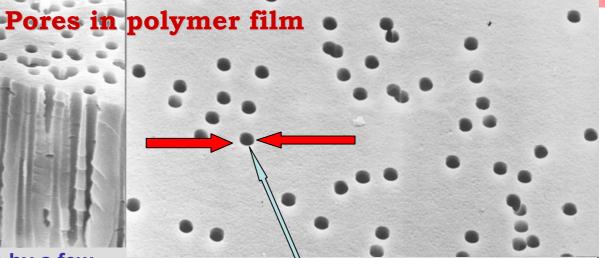
Film transport speed: 1- 100 cm/s


Typical productivity: 700 m/h

i.e. ~ $40 \text{ m}^2/\text{h}$

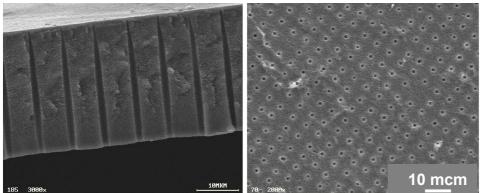
I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto²³

Evolution of an heavy ion track in polimer film at chemical etching


I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto²⁴

2. Cyclotrons at FLNR Accelerator Based Research and Technology

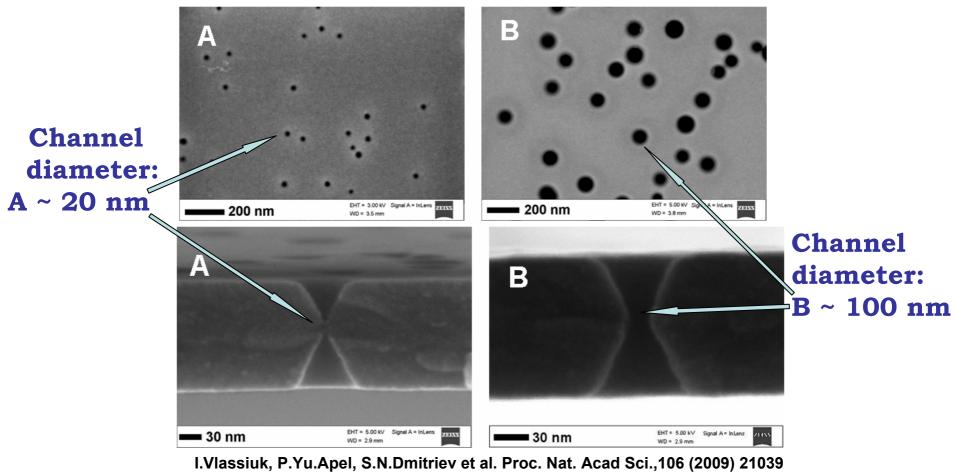
Track membrane production technology



Membrane channel length is by a few thousand times larger of pore diameter

Pore diameter is of $5\mu - 0.05\mu$

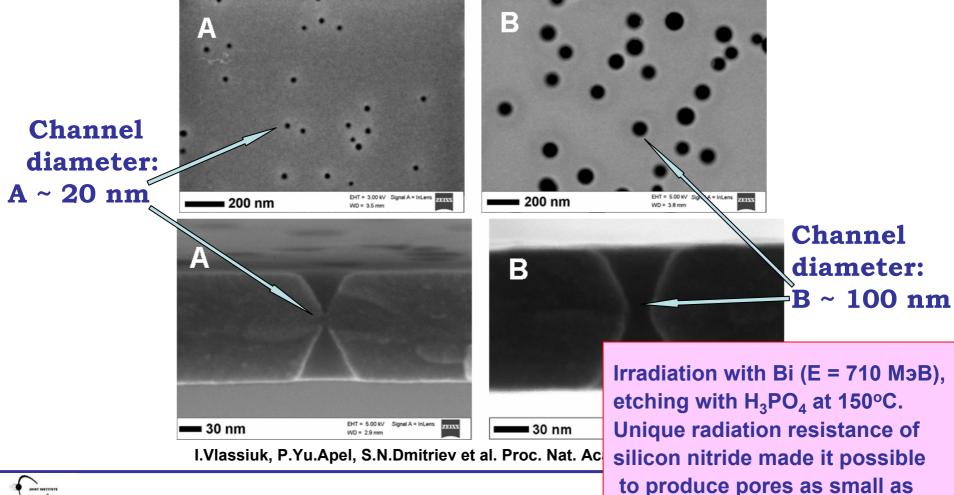
Asymmetric track membranes with regular structure \rightarrow \rightarrow modeling of biological ion channels


eling of biological ion channels An example: film irradiated at GSI with "microbeam" ahs been etched at JINR with a special technology.

[P.Yu. Apel, I.V. Blonskaya, O.L.Orelovitch, S.N. Dmitriev. NIM in Phys. Res., 2009]

Track membrane production technology

Nanopore track membranes fabricated from thin Si_3N_4 films for nanofluidics



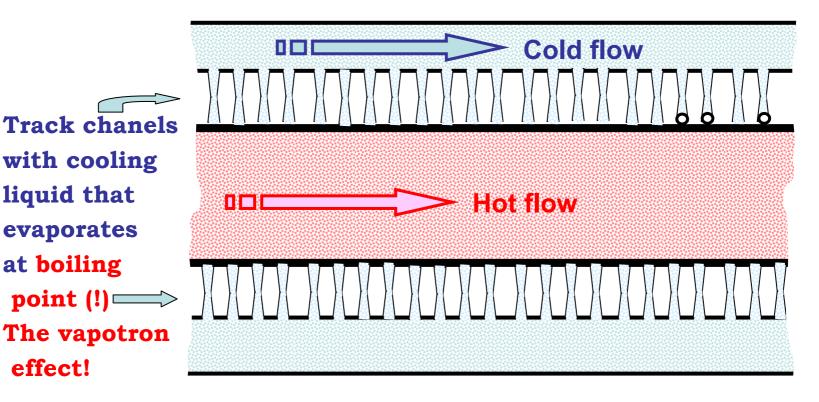
I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto²⁶

Track membrane production technology

Nanopore track membranes fabricated from thin Si_3N_4 films for nanofluidics

I.Meshkov Accelerators Application at JINR

IPA a few nanometers in diameter.


2. Cyclotrons at FLNR Accelerator Based Research and Technology

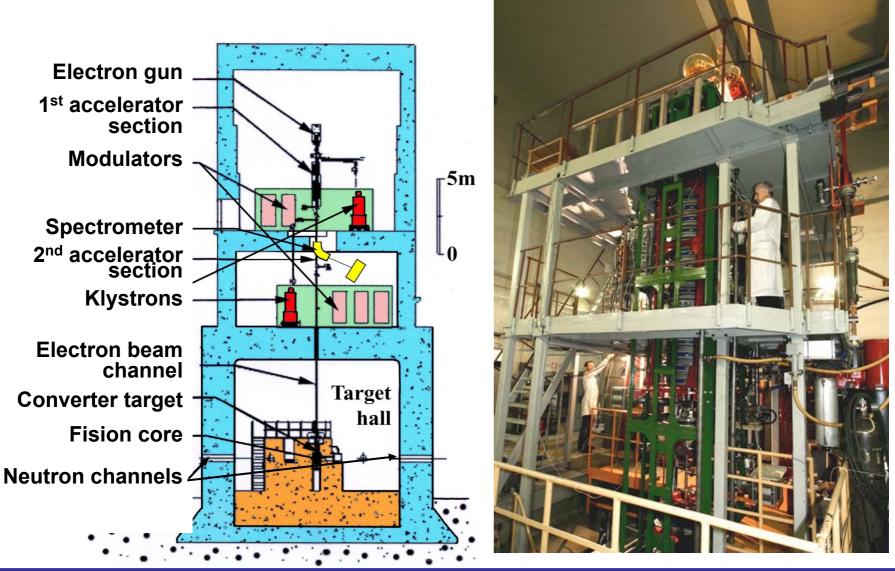
Track Membrane Based Technologies

Applications:

- Medicine
- Biology
- Industry

An example of track membranes application in technology: Heat exchange tubes with microstructure surface

Track membrane production technology

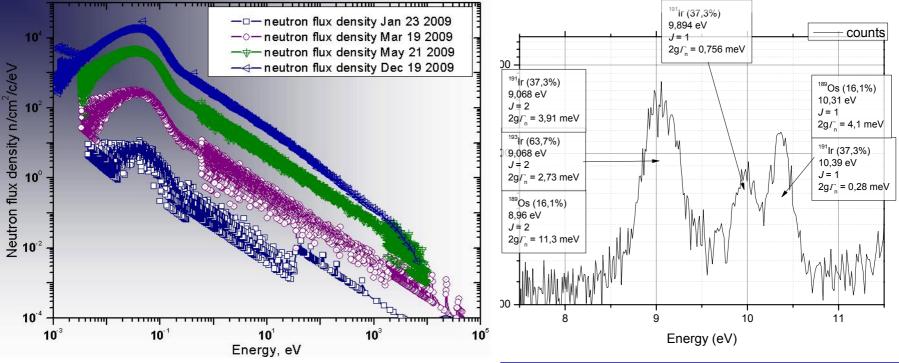

Project "Beta" at FLNR JINR To be completed by 2012 Cyclotron DC-110

Ions	Energy [MeV/amu]	Intensity [10 ¹² pps]
⁴⁰ Ar ⁷⁺		6.25
86 Kr 15+	2.5	6.25
¹³² Xe ²³⁺		3.12

I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto²⁹

3. IREN - Intense REsonance Neutron Source

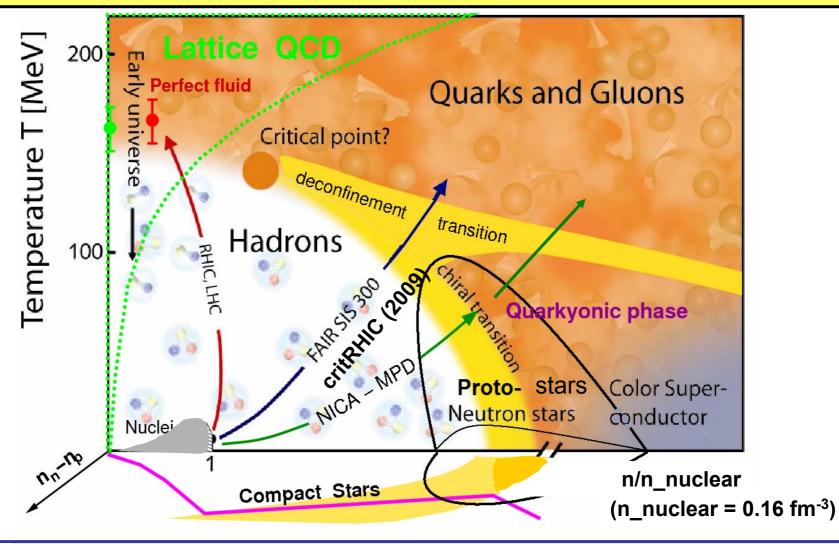
IREN Source Parameters				
Parameter	Design	Stage I (2010)		
Electron energy, MeV	200	30		
Peak current, A	1.5	3.0		
Beam pulse duration, ns	200	100		
Repetition frequency, Hz	150	25 ÷ 50		
Average beam power, kW	9.0	0.225 ÷ 0.450		
Multiplication target	Pt	W (no multiplctn)		
Average neutron flux, s ⁻¹	1.16 · 10 ¹⁵	1 · 10 ¹¹		



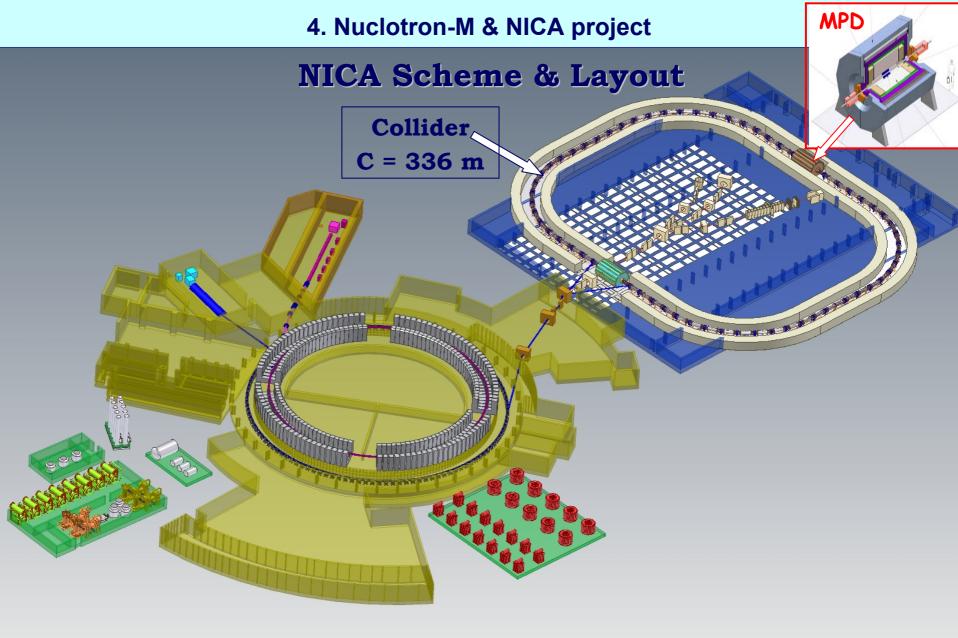
Neutron source applicationsspectroscopy and element analysis

First examples of IREN source application:

- ✓ Radiation resistivity of GaAs and Si detectors;
- ✓ Analysis of Boron content in Boron-containing ceramics (from Belarus)
- ✓ Analysis of rare elements (Pd, Os, Ir, Pt,...) content in Gold-containing ore

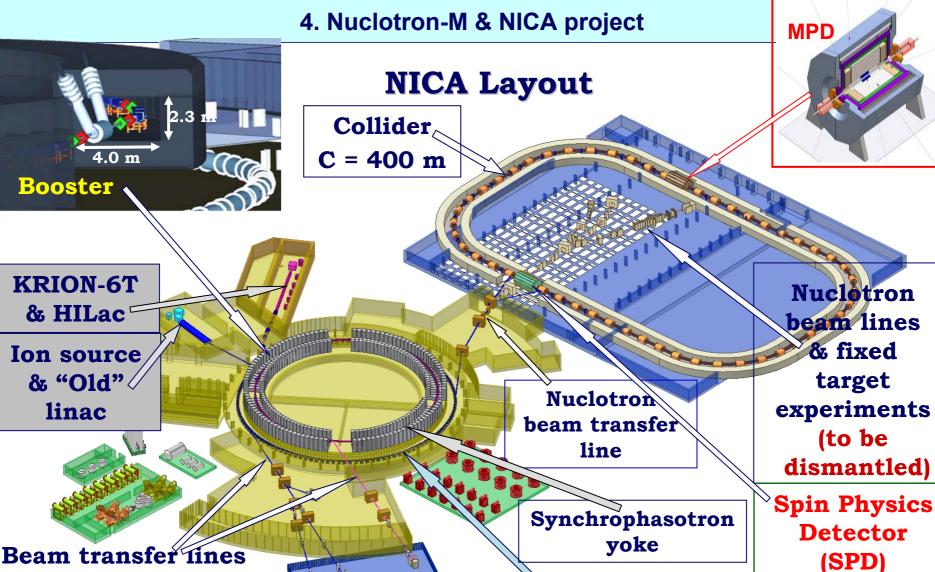


I.Meshkov Accelerators Application at JINR IP


IPAC'2010

May 23-28, 2010 Kyoto³²

Relativistic nuclear physics today & "the physics case" for NICA

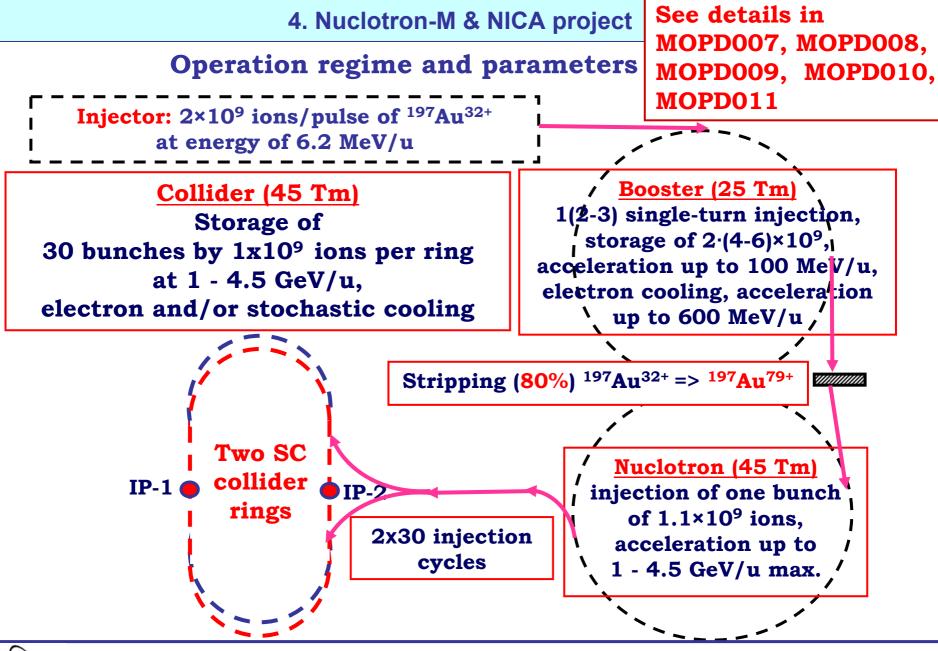


I.Meshkov Accelerators Application at JINR IPAC'2010 May 23-28, 2010 Kyoto³⁴

& New research area

Nuclotron

Nuclotron-based Ion Collider fAcility (NICA) The NICA Project goals :


1a) Heavy ion colliding beams ¹⁹⁷Au⁷⁹⁺ x ¹⁹⁷Au⁷⁹⁺ at s_{NN} = 4 ÷ 11 GeV (1 ÷ 4.5 GeV/u ion kinetic energy) at L_{average}= 1E27 cm⁻²⋅s⁻¹ (at √s_{NN} = 9 GeV)

1b) Light-Heavy ion colliding beams of the same energy range and luminosity

2) Polarized beams of protons and deuterons:
 p↑p↑ √s_{NN} = 12 ÷ 25 GeV (5 ÷ 12.6 GeV kinetic energy)

 $d\uparrow d\uparrow \sqrt{s_{NN}} = 4 \div 13.8 \text{ GeV} (2 \div 5.9 \text{ GeV/u ion kinetic energy})$

Nuclotron: Superconducting Proton Synchrotron (since 1993)

Nuclotron parameters

Parameter	Project	Status (March 2010)
1. Circumference, m	251.5	
2. Max. magn. field, T	2.05	1.8
3. Magn. rigidity, T⋅m	45	39.5
4. Cycle duration, s	2.0	5.0
5. B-field ramp, T/s	2.0	1.0
6. Accelerated particles	p– U, p↑, d↑	p-Xe, d↑
7. Max. energy, GeV/u	12.6(p), 5.87(d) 4.5(¹⁹⁷ Au ⁷⁹⁺)	5.1(d), 1.0(²³⁸ Xe ²⁴⁺)
6. Intensity, ions/cycle	1E11(p), 1E9 (A > 100)	1E10 ¹¹ (p), 1E10 (d↑) 1E6 (Xe ²⁴⁺)

Present Basic Research on Nuclotron Beams Relativistic nuclear physics

✓ FAZA - phase transitions in hot nuclear matter: p (8 GeV) + Au ...

✓ DELTA-2 – Fine resonant structure at π- meson generation: d (350 MeV/u) + Ag => π^+ + ...

 MARUSYA – Cumulative generation of antimatter in heavy ions collisions at below threshold energy

<u>Spin physics</u> in few body nuclear systems ($d\uparrow$)

> TPD - Tensor polarization detection in d[↑] crossing a target

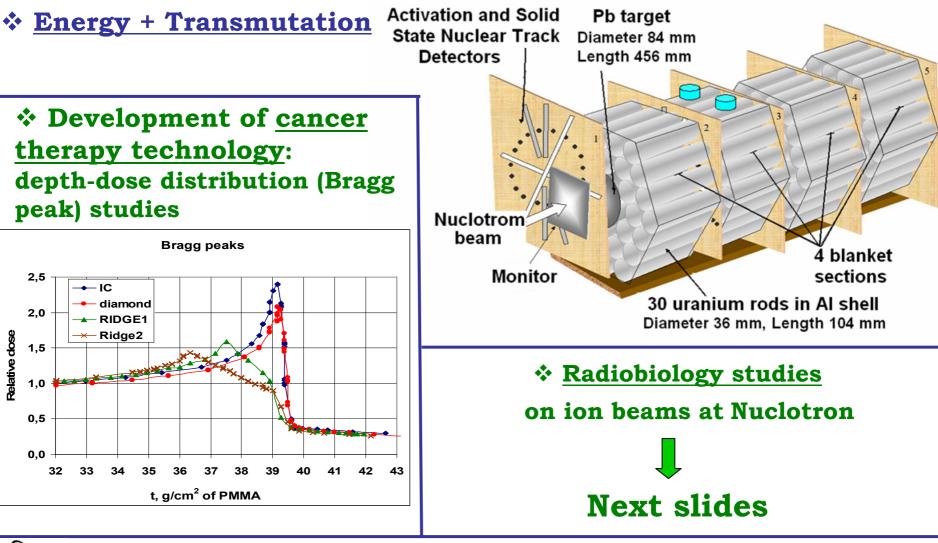
> LNS - Light nuclei spin polarimetry in d[↑] scattering on p and ³He

> NN amplitude - $d\uparrow$ + p => n + $2p_{s\uparrow}$

> Polarization effects in cumulative particle production:

 $d^{\uparrow}(3.5 \text{ Gev/u}) + A => \pi^+ + X, A = H, C, Be$

 $ightarrow \Delta \sigma$ - Determination of the np elastic scattering matrix element at zero degree in the few GeV energy region


Physics of flavours

NIS – Nucleon intrinsic strangeness: test of OZI rule in

 $p + p => 2p + \phi/\omega$ and $n + p => n + p + \phi/\omega$ near threshold

Applied Research on Nuclotron Beams

The NICA Project Milestones

Stage 1: years 2007 – 2011

 Upgrade and Development of the Nuclotron
 Preparation of Technical Design Report of the NICA and MPD
 Designing MPD and NICA elements

• Stage 2: years 2010 – 2015 Manufacturing and mounting NICA and MPD

Stage 3: years 2014 - 2015
 - Commissioning

• Stage 4: year 2015 - Beginning of operation

The NICA Collaboration

Budker INP

Booster RF system

- ✓ Booster electron cooler
- ✓ Collider RF system
- Collider SC magnets (expertise)
- ✓ HV e-cooler for collider
- ✓ Electronics
- ✓ Injector linac (under discussion)

IHEP (Protvino): Injector Linac

FZ Jűlich (IKP): HV E-cooler & Stoch. cooling

Fermilab: HV E-cooler,

Beam dynamics, Stoch. cooling

CERN: Beam dynamics, E-cooling, Acceler. technique

All-Russian Institute for Electrotechnique HV Electron cooler

BNL (RHIC) Electron & Stoch. Cooling

GSI/FAIR

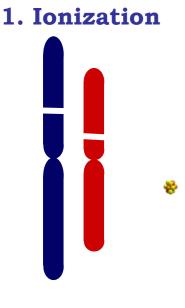
SC dipoles for Booster/SIS-100 SC dipoles for Collider

ITEP: Beam dynamics in the collider

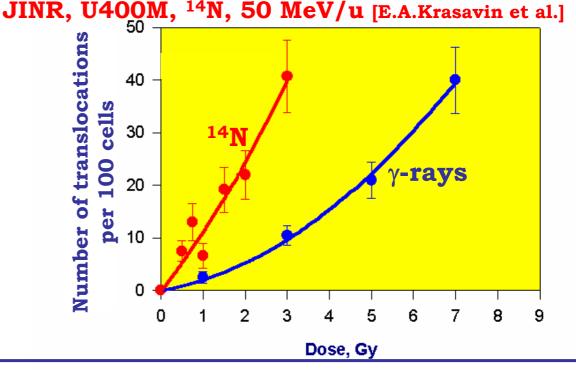
Corporation "Powder Metallurgy" (Minsk, Belorussia): Technology of TiN coating of vacuum chamber walls for reduction of secondary emission

"New radiobiology" with accelerated heavy ions

"New radiobiology" with accelerated heavy ions

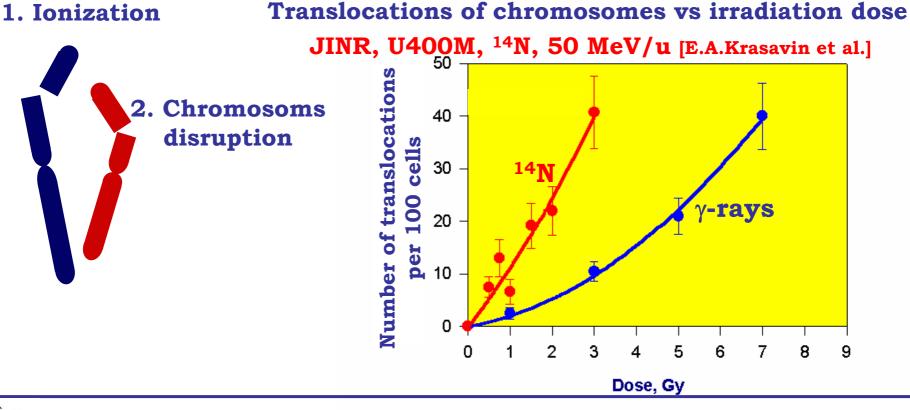

JINR Accelerators Used in Radiobiology Research

Accelerator	Particles	Max. energy
Phasotron	Protons	660 MeV
Cyclotron U200	Heavy ions	10 MeV/amu
Cyclotron U400M	Heavy ions	50 MeV/amu
Nuclotron	Ions (d - Xe)	6 - 3 GeV/amu

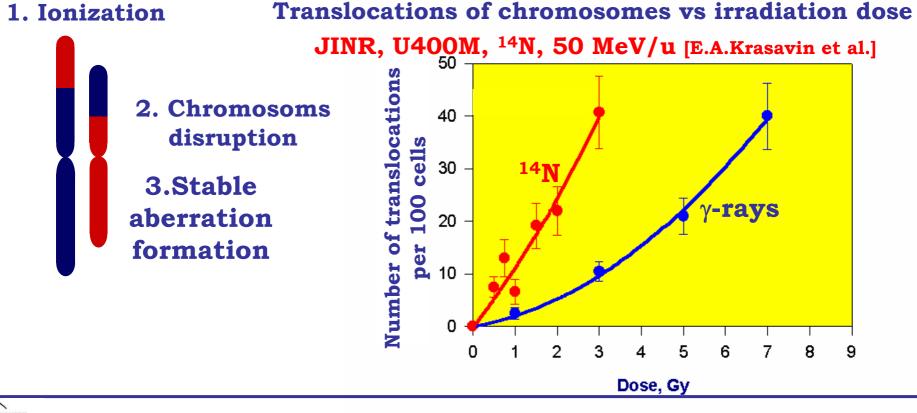


"New radiobiology" with accelerated heavy ions

A. Heavy ions – a powerful tool for studies of fundamental problems of radiation genetics Formation of chromosomal aberration of human cells with heavy ion irradiation

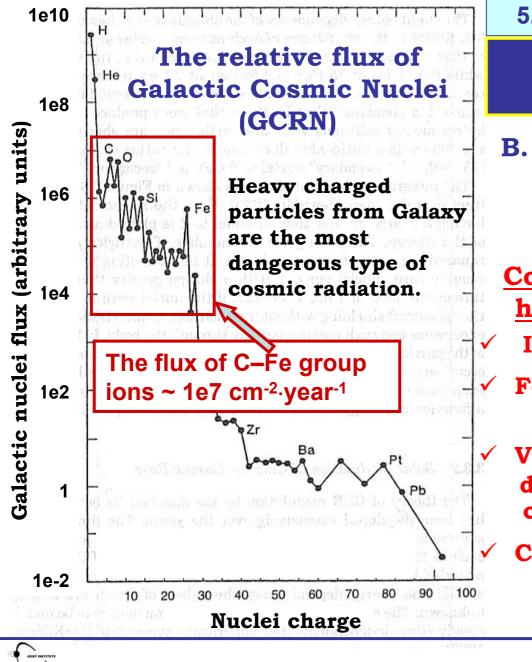

Translocations of chromosomes vs irradiation dose

"New radiobiology" with accelerated heavy ions


A. Heavy ions – a powerful tool for studies of fundamental problems of radiation genetics Formation of chromosomal aberration of human cells with heavy ion irradiation

"New radiobiology" with accelerated heavy ions

A. Heavy ions – a powerful tool for studies of fundamental problems of radiation genetics Formation of chromosomal aberration of human cells with heavy ion irradiation


IPAC'2010

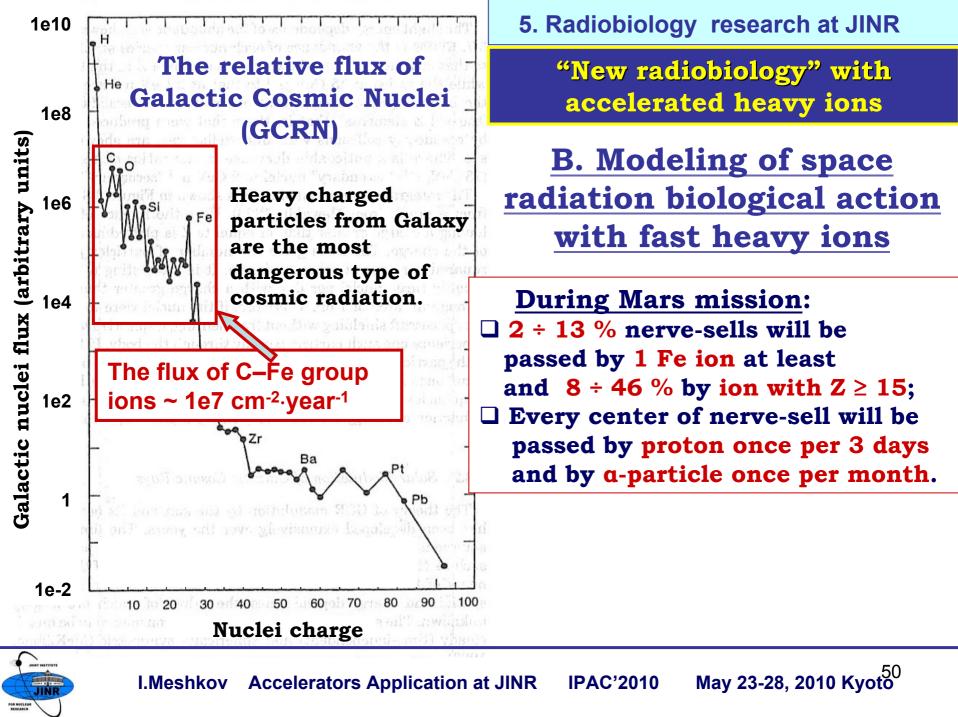
May 23-28, 2010 Kyoto

Accelerators Application at JINR

I.Meshkov

"New radiobiology" with accelerated heavy ions

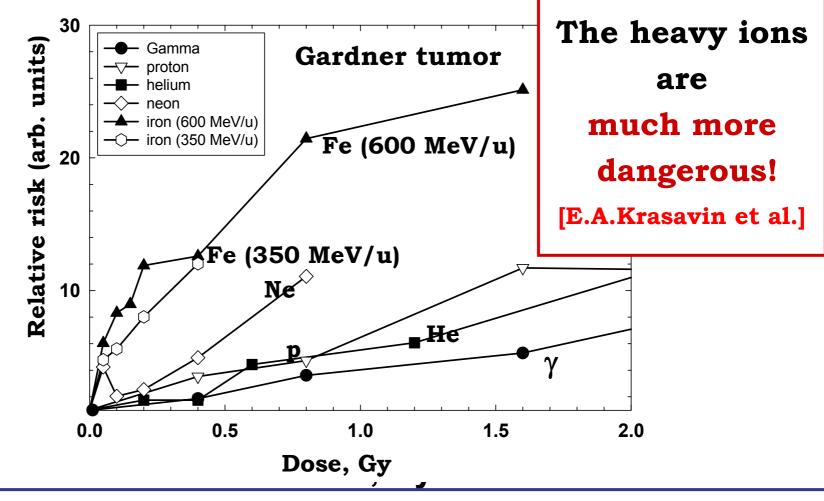
B. Modeling of space radiation biological action with accelerated heavy ions


<u>Consequences of Galactic</u> <u>heavy ions action</u>

Induction of cancer;

Formation of gene and structural mutations;

Violation of visual functions: damage of retina and cataract induction;


Central Nervous System violation.

5. Radiobiology research at JINR

"New radiobiology" with accelerated heavy ions

B. Modeling of space radiation biological action with accelerated Harderian heavy ions or Prevalence

Conclusion

1. The numerous accelerator facilities existing at JINR define its distinctive feature as

multidisciplinary institution

that differs it from laboratories of "monoculture" and allows to perform both

basic and applied research

in a wide range of particle beam parameters.

2. Realization of the projects being presently under development at JINR –

DRIBS-III, IREN, NICA

promises a further advancement in the experimental studies in the fields of particle and nuclear physics, radiobiology

and technology applications.

Thank you for your attention!

