Minimal Invasive Beam Profile Monitors for High Intense Hadron Beams

Peter Forck

GSI Helmholtz-Zentrum für Schwerionenforschung, Darmstadt, Germany

IPAC 2010 Kyoto

Basics on physics, recent technical realizations and some applications for:

- Detection of residual gas products: IPM and BIF
- Laser 'wire' and electron beam scanners
- Photon emission for relativistic beams: OTR and SRM

Comparison as a summary

Remark: Examples are presented from different laboratories. An extended list of existing installations is given in the written proceedings.

Profile Measurement Demands

Non-invasive diagnostics \Rightarrow **undisturbed observation of beam parameters**

Transfer line: Observation of same beam at different locations, variation during pulse
 Synchrotron: Observation of variation during acceleration and any further manipulations
 Large beam power: Destruction of intersecting material as wire scanner, screen, SEM-Grid
 Diagnostics with small impact on beam *and* instrument => high sensitivity

Typical beam parameter:

- > Beam width σ : 0.3 mm to 10 mm (sometimes non-Gaussian)
- Beam current I beam: Pulsed LINAC up to 100 mA, synchrotron up to 10 A

Physical basis for detection:

- Electronic Stopping Power dE/dx: Ionization Profile Monitor IPM Beam Induced Fluorescence BIF Monitor
- Photo-detachment for H⁻ beams: Laser 'Wire' Scanner LWS
- Deflection in beam's space charge: Electron Beam Scanner EBS
- Transition radiation for rel. beams E>10 GeV: OTR Screens ('minimal invasive' method)
- Synchrotron radiation for rel. beams E>100 GeV: Synchrotron Radiation Monitor SRM

Signal Strength for IPM and BIF-Monitor

10 **Physics**: **Physics:** Energy loss of hadrons in gas dE/dx \Rightarrow Profile determination from residual gas xProton energy loss in 10^{-7} mbar N₂ 10^{-3} using SRIM > **Ionization:** about 100 eV/ionization dE/ synchrotron loss Excitation + photon emission: NAC, cyclotro 10^{-4} about 3 keV/photon energy ion source 0.01 0.1 10 100 1000 10000 Ionization probability proportional to energy [MeV] dE/dx by Bethe-Bloch formula: $-\frac{dE}{dx} = \operatorname{const}\left(\frac{Z_t \cdot \hat{\rho}_t}{A_t}\right)\left(\frac{Z_p^2}{B^2}\right)\left|\ln\left(\operatorname{const} \cdot \frac{\gamma^2 \beta^2}{W_{\text{max}}}\right) - \beta^2\right|$ Target electron density: $\propto 1/E_{kin}$ (for E_{kin} > 1GeV nearly constant) Proportional to vacuum pressure \Rightarrow Adaptation of signal strength Strong dependence on projectile charge for ions A^{Zp}

Ionization Profile Monitor

Main application: Synchrotrons and transfer lines for all beams

GSI

Ionization Profile Monitor: Principle

Advantage: ' 4π -detection scheme' for ionization products **Detection scheme:**

- Secondary e⁻ or ions accelerated by E-field electrodes & side strips E≈ 50... 300 kV/m
- > MCP (Micro Channel Plate) electron converter & 10⁶-fold amplifier
- either Phosphor screen & CCD \rightarrow high **spatial** resolution of 100 μ m
- > or wire array down to 250 μm pitch \rightarrow high **time** resolution

IPMs are installed in nearly all synchrotrons However, no 'standard' realization exists!

P. Forck, IPAC 2010 Kyoto

Ionization Profile Monitor: Realization at GSI and FZJ

P. Forck, IPAC 2010 Kyoto

6

Ionization Profile Monitor: Realization at GSI and FZJ

Insertion 650 mm **Example:** Installation at GSI and FZJ **IPM** support \blacktriangleright Electric potential ±6 kV \Rightarrow E=70 kV/m & UV lamp electrodes \Rightarrow 1% homogeneity Ø250 mm ➤MCP for single particle detection & Horizontal IPM: **Vertical IPM** phosphor for light spot, 100x50 mm² **E-field box** ➢ Readout by camera with 200 fps **Electrodes** ►UV lamp: beam calibration of MCP sensitivity MCH -0000m E-field separation disks View port Ø150 mm Horizontal camera

Installation at FZJ-COSY: insertion 650mm

C. Böhme (FZJ), T Giacomini (GSI) et al, DIPAC'09

P. Forck, IPAC 2010 Kyoto

7

IPM: Observation of Cooling and Stacking

Example:

U⁷³⁺ beam at GSI for intensity increase stacking by *electron cooling* and acc. 11.4 \rightarrow 400 MeV/u

IPM: Profile recording every 10 ms measurement within *one* cycle.

Task for IPM:

- Observation of cooling
- Emittance evaluation during cycle

see poster: V. Kamerdzhiev (FZJ) et al., MOPD093 P. Forck (GSI) et al., DIPAC'05

P. Forck, IPAC 2010 Kyoto

IPM: Turn-by-Turn Measurement

Important application:

Injection matching

to prevent for emittance enlargement \Rightarrow turn-by-turn measurement Required time resolution 100 ns **Example**: Injection to J-PARC RCS at 0.4 GeV Anode: wire array with 1mm pitch

Further advanced turn-by-turn IPMs at BNL, CERN, FNAL etc.

H. Hotchi (J-PARC), HB'08, A Satou (J-PARC) et al., EPAC'08

P. Forck, IPAC 2010 Kyoto

IPM: Space Charge Influence for Intense Beams

P. Forck, IPAC 2010 Kyoto

IPM: Magnet Design

Design by G. de Villiers (iThemba Lab), T. Giacomini (GSI) Further types of magnets e.g. K.Satou (J-PARC) et al., EPAC'08, J.Zagel (FNAL) et al., PAC'01, R.Connolly (RHIC) et al., PAC'01, C. Fischer (CERN) et al. BIW'04

Beam Induced Fluorescence Monitor

Main application: Transfer lines for all beams

Beam Induced Fluorescence Monitor: Principle

Detecting *photons* from residual gas molecules, e.g. Nitrogen N_2 + Ion $\rightarrow (N_2^+)^*$ + Ion $\rightarrow N_2^+ + \gamma$ + Ion N₂-fluorescent gas emitted into solid angle Ω to camera $\sqrt{a^{cuum}}$ equally distributed Blackened walls 150mm flange Valve ViewPort ens, Image-Intensifier and CCD FireWire-Camera

F. Becker (2007) et al., Proc. DIPAC'07

Beam Induced Fluorescence Monitor: Principle

Detecting *photons* from residual gas molecules, e.g. Nitrogen N_2 + Ion $\rightarrow (N_2^+)^*$ + Ion $\rightarrow N_2^+ + \gamma$ + Ion emitted into solid angle Ω to camera $\sqrt{a^{cuum}}$ 150mm flange

Features:

- Single pulse observation possible down to $\approx 10 \ \mu s$ time resolution
- High resolution (here 0.2 mm/pixel) can be matched to application
- Commercial Image Intensifier
- Less installations inside vacuum as for IPM

See poster Y. Hashimoto (J-PARC) et al., MOPE014

F. Becker (2007) et al., Proc. DIPAC'07

ຊຸຊຸຊຸຊຸດ ວິ aver. pixel int. Beam: $4x10^{10}$ Xe $^{48+}$ at 200MeV/u, p=10⁻³ mbar 14 Minimal Invasive Profile Monitors for Hadron Beams

beam direction

Blackened walls

Viewport

iewport size

N₂-fluorescent gas equally distributed

profile

Valve

闘

P. Forck, IPAC 2010 Kyoto

BIF-Monitor: Technical Realization

Example BIF station at GSI-LINAC:

- Insertion length 25 cm
- 2 x image intensified CCD cameras
- Optics with reproduction scale 0.2 mm/pixel
- Gas inlet + gauge
- Pneumatic feed-through for calibration

Realization at other labs (e.g.BNL, CERN, FZJ): Segmented photomultiplier, CID or emCCD

15 Minimal Invasive Profile Monitors for Hadron Beams

P. Forck, IPAC 2010 Kyoto

BIF-Monitor: Signal Scaling

Scaling of fluorescence yield:

Experiments at CERN-synchrotrons and GSI HEBT behind synchrotron \Rightarrow yield scales like Bethe-Bloch equation

Further results:

- Excited transitions independent of energy
- Fluorescence yield proportional to vacuum pressure
- Profile width independent of pressure tested for 10⁻⁶ to 10⁻¹ mbar
- ➤ Lifetime independent on energy ≈60 ns for N₂ and ≈6 ns for Xe

Example: CERN-PS for p in N₂ and Xe

M. Plum (LANL&CERN) et al., NIM A (2002), F. Becker (GSI) et al, Proc DIPAC'07

BIF-Monitor: Spectroscopy – Fluorescence Yield

P. Forck, IPAC 2010 Kyoto

BIF-Monitor: Spectroscopy – Profile Reading

P. Forck, IPAC 2010 Kyoto

Laser 'Wire' Scanner

Main application: Transfer lines H⁻ beams only

Laser Scanner: Principle for H⁻ Beams

Photo-detachment: $H^- + \gamma \rightarrow H^0 + e^-$ binding energy $E=0.75 \text{ eV} \leftrightarrow \lambda=1670 \text{ nm}$

Photo-detachment maximal at λ =830 nm Doppler shifted photon energy in rest-frame:

Y. Liu (SNS) et al., NIM A 238, 241 (2010) , R.Connolly et al., Proc. LINAC'02

P. Forck, IPAC 2010 Kyoto

20 Minimal Invasive Profile Monitors for Hadron Beams

Lab frame laser wavelength

Laser Scanner: Detection Scheme for H⁻ at SNS-LINAC

SNS installation:

Nd:YAG (50-200 mJ, 7ns) in laser room ≻One of 9 stations is served at a time ≻Laser with spot size: 10 to 50 µm

Y. Liu (SNS) et al., NIM A 238, 241 (2010),D.A. Lee (RAL) et al., EPAC '08,R. Connolly (BNL) et al. BIW'10

P. Forck, IPAC 2010 Kyoto

21

Laser Scanner: Detection Scheme for H⁻ at SNS-LINAC

SNS installation:

Nd:YAG (50-200 mJ, 7ns) in laser room
>One of 9 stations is served at a time
>Laser with spot size: 10 to 50 μm
>e⁻ separation by B≈20 mT (β-dependent)
>Detection with Faraday Cup

Electron collector

Dipole magnet

Y. Liu (SNS) et al., NIM A 238, 241 (2010),D.A. Lee (RAL) et al., EPAC '08,R. Connolly (BNL) et al. BIW'10

P. Forck, IPAC 2010 Kyoto

Laser Scanner: Results for H⁻ at SNS-LINAC

SNS installation:

Nd:YAG (50-200 mJ, 7ns) in laser room
>One of 9 stations is served at a time
>Laser with spot size: 10 to 50 μm
>e⁻ separation by B≈20 mT (β-dependent)
>Detection with Faraday Cup
>Example: Profile measurement at SNS
>Advantage: Time resolution ≈30 ns

 \Rightarrow variation during macro-pulse

Compact installation with local laser possible
 Spatial resolved detection of separated H⁰
 → emittance determination

Long. bunch shape measurement possible
Applicability considered for 70 keV at RAL

Y. Liu (SNS) et al., NIM **A** 238, 241 (2010),

D.A. Lee (RAL) et al., EPAC '08,

R. Connolly (BNL) et al. BIW'10, J. Pogge (SNS) et al., Proc. BIW '08

Electron Beam Scanner

Main application: Synchrotrons for all beams

Electron Beam Scanner: Principle

Electron Beam Scanner: Installation at SNS-Ring

Installation for horizontal profile

Phosphor Parameter for SNS: & camera ≻Total length: 1.5 m Electron energy: max. 75 keV Electron current: max. 5 mA ► Repetition rate: 5 Hz Phosphor observation with camera Scan duration: 20 ns

Requirements:

➢Optimal electron energy depends on ion current ➤Shielding against

external B-fields

beam pipe Ø250mm

protons

quadrupoles

rf deflector

26

electron gun Scanner Design: BINP, Novosibirsk

W. Blokland (SNS) et al., Proc. DIPAC'09

P. Forck, IPAC 2010 Kyoto

Electron Beam Scanner: Results

Example:

Raw data: horizontal defection for 5 μ C at SNS Ring

 Device tested with 7.7 keV/u K⁺ P.K. Roy (LBNL) et al. (2005)
 Ion beam scanner tested with p at 50 MeV and 150-450 GeV J. Bosser (CERN) et al., (2002)

W. Blokland (SNS) et al., Proc. DIPAC'09

Sliced profile:

Proton beam 4 µC filling 20 ns scan one bunch at a turn 343 (recorded at consecutive ring fillings)

Advantage:

Sliced profile recording with 20 ns resolution!

Optical Transition Radiation Screen

Main application: Synchrotrons and Transfer lines for E > 10 GeV

Optical Transition Radiation Monitor: Principle

Physics: Boundary with different dielectric constant → Emission of photons within cone centered at 1/γmaximum scaling $dN/dθ \propto γ^2$ Practical usage only for E > 10 GeV Surface phenomena \Rightarrow thin foil possible

OTR screens operational at FNAL, CERN, J-PARC...

OTR-Monitor: Technical Realization

Physics: Boundary with different dielectric constant

→ Emission of photons within cone centered at $1/\gamma$ maximum scaling $dN/d\theta \propto \gamma^2$ Practical usage only for E > 10 GeV Surface phenomena \Rightarrow thin foil possible

Example of realization at TERATRON:

➢Insertion of foil

e.g. 5 µm Kapton coated with 0.1µm Al
 ➢ Invasive diagnostics but thin foil allows for observation of several turns

>Advantage:

thin foil \Rightarrow low heating & low straggling 2-dim image visible

Installation at FNAL-TEVATRON

V.E. Scarpine (FNAL) et al., BIW'06

OTR-Monitor: Results

Physics: Boundary with different dielectric constant

→ Emission of photons within cone centered at $1/\gamma$ maximum scaling $dN/d\theta \propto \gamma^2$ Practical usage only for E > 10 GeV

Example of realization at TERATRON:

➢Insertion of foil

e.g. 5 µm Kapton coated with 0.1µm AI
 ➢ Invasive diagnostics but thin foil allows for observation of several turns

>Advantage:

thin foil \Rightarrow low heating & low straggling 2-dim image visible

Measurement at FNAL-TEVATRON

Example of results: Single proton bunch at 150 GeV with turn-by-turn resolution

2-dim image: x-y coubling visible e.g. effect on e.g. skew quadupoles

V.E. Scarpine (FNAL) et al., BIW'06

P. Forck, IPAC 2010 Kyoto

OTR-Monitor: Results

Example for target diagnostics at FNAL:

Insertion of OTR in front of NuMI target 120-150 GeV protons for neutrino physics Online profile observation possible

Radiation hardness test at FNAL:

7.10¹⁹ protons in 70 days → half signal strength but *same* width reading

Application: Target \rightarrow online diagnosticsSynchrotron \rightarrow injection studies

Further studies: Coherent OTR Optical Diffraction Radiation

V.E. Scarpine (FNAL) et al., PAC'07

Time (days)

Synchrotron Radiation Monitor

Main application: Synchrotrons for E > 100 GeV

Synchrotron Radiation Monitor: Principle

Physics: Emission of radiation by charges on bent trajectory

H.W.K. Cheung (FNAL) et al., PAC'03, R. Thruman-Keup (FNAL), BIW'06, G. Kube (DESY) et al., BIW'06

P. Forck, IPAC 2010 Kyoto

Synchrotron Radiation Monitor: Technical Realization

Physics: Emission of radiation by charges on bent trajectory

P. Forck, IPAC 2010 Kyoto

Synchrotron Radiation Monitor: Results

Physics: Emission of radiation by charges on bent trajectory

For a dipole: $P \propto \frac{\gamma^4}{\rho^2}$ and $\lambda_c \propto \frac{\rho}{\gamma^3}$

Dipole of p = 1km, y=1000 ⇒ λ_c≈ 4µm
Radiation from dipole-fringe field: shorter λ_c
Undulator for 100 to 500 GeV

Example for realization at Tevatron:

Optical table with intensified CID *Example* for realization at LHC:

- > Undulator 0.45 \rightarrow 1.2 TeV,
- ➢ Dipole edge: 1.2→3 TeV
- Dipole center 3 to 7 TeV

Example from LHC acceleration:

➢Radiation from undulator for 0.45 TeV

- ➢Online display every 20 ms
- ➤Turn-by-turn readout in preparation

T. Lefevre (CERN) et al., IPAC'10, R. Jones (CERN), BIW'10

P. Forck, IPAC 2010 Kyoto

Comparison of minimal invasive Profile Diagnostics

Very simplified comparison between the minimal invasive methods

	IPM	BIF	EBS	LWS	OTR	SRM
Physics	Energy loss	Energy loss	Space charge defl.	Photo- detachment	Transition radiation	Sycnhrotron light
Beam precaution	None	None	None	H.	<i>E</i> >10 GeV	<i>E</i> >100 GeV
Profile display	Projection	Projection	Projection	Projection	2-dim	2-dim
Imaging meth.	Continuous	Continuous	Scan 10 Hz	Scan 30 Hz	Continuous	Continuous
Signal strength	Medium	Low	High	High	Medium	Low
Time resolution	100 ns	1 μs	10 ns	10 ns	1 μs	10 μs
Spatial resolution	100 µm	30 µm	100 µm	30 µm	10 µm	100 μm
Complexity	High	Low	Medium	High	Low	Very high
Main application	Synchr. & Trans. line	Trans. line	Synchr.	Trans.line	Synchr.& Trans. Line	Synchr. only

Negative ion beam sheet: see poster K. Shinto (JAEA) et al., MOPE016

P. Forck, IPAC 2010 Kyoto

Acknowledgement:

Many thanks to all colleagues for valuable discussion.

For release of view-graphs and 'background' information many thanks to:

W. Blokland (ONL), J. Dietrich (FZJ), C. Gabor (RAL), G. Kube (DESY),

T. Lefevre (CERN), Y. Liu (ONL), J. Marroncle (CEA), J. Pogge (ONL),

K. Satou (J-PARC) and J. Zagel (FNAL).

For discussion and hard work with the monitors many thanks to GSI colleagues:

C. Andre, F. Becker, T. Giacomini and B. Walasek-Höhne

Thank you for your attention!