Production of a 1.3 Megawatt Proton Beam at PSI

0.0

Mike Seidel

and S. Adam, A. Adelmann, Ch. Baumgarten, J. Bi^{*}, R. Doelling, H.R. Fitze,
 A. Fuchs, M. Humbel, J. Grillenberger, D. Kiselev, A. Mezger, D. Reggiani,
 M. Schneider, J. Yang^{*}, H. Zhang, T.J. Zhang^{*}
 PSI, Villigen, Switzerland; *CIAE, Beijing, China

IPAC 2010, Kyoto, May 25

Accelerator Facilities at PSI

p-Therapie 250 MeV, <1µA

central controlroom

Swiss Light Source 2.4 GeV, 400mA High Intensity Proton Accelerator 590 MeV, 2.2mA

SINQ

- Andrews of the

XFEL Injector 250 MeV

PSI user laboratory key numbers 2009

			PST		
		SINQ	LOR OF PARTIES	etcon proto proto proto proto proto proto con con con con con con con co	
2009	SLS	SINQ	SμS	LTP	PSI total
Beamlines	15	13	6	5	39
Instrument Days	1778	2105	681	640	5204
Experiments	1053	488	188	5	1734
User Visits	3145	789	342	250	4526
Individual Users	1518	406	148	150	2168
New Proposals	724	323	178	-	1225
[S.Janssen]	photons	neutrons	uon spectroscopy	particle physics	
			Ĩ		3/29

Outline

Overview PSI Facility

history of max. current in the PSI accelerator

High Power Proton Accelerators

Next:

Sector Cyclotrons

[cyclotron concept, compact vs high intensity cyclotron, basic beam dynamics]

classical cyclotron

➔ two capacitive electrodes "Dees", two gaps per turn

➔ internal ion source

➔ critical: vertical beam focusing by transverse variation of bending field

 $Q_{y} = \left(-\frac{r}{B}\frac{dB}{dr}\right)^{1/2}$

but isochronous condition for relativistic ions requires positive slope...

advantage:

 CW operation
 periodic acceleration, i.e. multiple usage of accelerating voltage

today: sector cyclotrons

- edge+sector focusing, i.e. spiral magnet boundaries (angle ξ), azimuthally varying B-field (flutter F) $Q_y^2 \approx n + F (1+2 \cdot tan^2(\xi))$
- modular layout (spiral shaped sector magnets, box resonators)
 electrostatic elements for extraction / external injection
 radially wide vacuum chamber; inflatable seals
- strength: CW acceleration; high extraction efficiency possible:
 99.98% = 1 2-10⁻⁴
- limitation: kin.Energy ≤ 1GeV, because of relativistic effects

50MHz resonator

150MHz (3rd harm) resonator

high intensity beam in cyclotrons

critical: extraction loss

- ▶ beam tails, blowup by long. space charge (overlapping turns) [sector charge density] × [time in cyc.] → ∞ (# turns)²
- loss at extraction element [1/turn separation] $\rightarrow \propto$ (# turns)¹

3'rd power scaling law and turn number history in Ring cyclotron

upgrade through fast acceleration (higher voltage \rightarrow RF systems, resonators)

Ring cyclotron beam profile at extraction simulation and measurement

high intensity vs. compact (medical) cyclotron

PSI Ring Cyclotron

optimized for high intensity sector cyclotron (magnets/resonators) $E_k = 590 MeV$, $I_{max} = 2.2 mA (1.3 MW)$ $B_{max} = 1.1 T$, $R_{extr} = 4.5 m$, $N_{turn} = 186$ extraction efficiency 99.98% loss: < 200W

Comet Cyclotron (cancer therapy)

optimized for cost/compactness superconducting magnet (integrated design) $E_k = 250 MeV$, $I_{max} = 1000 nA$ (250 W) $B_{max} = 3.8T$, $R_{extr} = 0.8m$, $N_{turn} \sim 620$ extraction efficiency ~80 % loss: < 50W

Comet during assembly

for high intensity beams in cyclotrons one needs:

- fast acceleration, i.e. high gap voltage! (loss $\propto N_{turn}^{3}$)
- large extraction radius!

space charge with short bunches - new regime, circular beam distribution

in theory

strong space charge within a bending field leads to rapid cycloidal motion around bunch center [Chasman & Baltz (1984)]

 \rightarrow bound motion; circular equilibrium beam destribution

20

in practice

PSI's Injector II cyclotron \rightarrow circular bunch shape observed; same regime desirable in Ring (10'th harmonic buncher)

blowup in ~20m drift

at buncher

40

longitudinal position [mm]

60

simplified model:

test charge in bunch field with vertically oriented bending field

[court. R.Doelling]

horizontal position [mm]

10

5

0 –

-5

0

head

Next:

components for high intensity operation [cyclotron resonators, meson-production targets, spallation neutron targets, interlock systems]

major component: RF resonators for Ring cyclotron

- the shown Cu Resonators have replaced the original Al resonators [less wall losses, higher gap voltage possible, better cooling distribution, better vacuum seals]
- F = 50.6MHz; Q₀ = 4·10⁴; U_{max}=1.2MV (presently 0.85MV→188 turns in cyclotron, goal for 3mA: 165 turns)
- Wall Plug to Beam Efficiency (RF Systems): 32% [AC/DC: 90%, DC/RF: 64%, RF/Beam: 55%]
- transfer of up to 400kW power to the beam per cavity
- \rightarrow very good experience so far

spallation target expertise at PSI

diagnostics/interlocks for machine protection

system based on ~150 interconnected fast (<100μs) VME and CAMAC modules treating about 1500 signals (loss monitors, segmented collimators, transmission measurements, temperatures, set values of magnets, resonators)

example: 110 ionisation chambers as beam loss monitors with fixed warning and interlock limits; critical ones also with limits as function of the beam current.

Simple and reliable device

Permanent display of losses

→ losses outside margins are interlocked (including low values)

Next:

operational experience

[new intensity record in 2009, beam loss experience, activation and service personnel dose]

new beam intensity record in 2009

 since 2009 license for standard operation 2.2mA (before 2.0mA); test operation at 2.4mA

new maximum current: 2.3 mA (1.36 MW)

observation of higher losses in early 2009

 graphite collimator (chamber protection) probably deformed or misaligned by RF heating → reduced vertical aperture
 decision: complete removal; rely now on (much improved) interlock system

beam loss statistics with/without collimator

with collimator

without collimator

- after removal of collimator operation at 2.2mA without problems
- plot: occurrence of combinations of extraction loss and beam current (note: log scale)

loss scaling with current [two setups / turn numbers]

absolute loss (nA) in Ring Cyclotron as a function of current

gap voltage increase in 2008: $780kV \rightarrow 850kV$ turn number reduction: $202 \rightarrow 186$ figure shows losses for optimized machine setup

component activation – Ring Cyclotron

activation level allows for necessary service/repair work

- personnel dose for typical repair mission 50-300µSv
- optimization by adapted local shielding measures; shielded service boxes for exchange of activated components
- detailed planning of shutdown work

PSI-HIPA operational data 2009

Downtime Causes

- electrostatic elements
- controls problems
- cooling/site power
- RF not prominent!

Performance 2009 Charge delivered: 9.7Ah Reliability: 89.5% Beam trips: 25..50 d⁻¹

Summary/Outlook

- the PSI accelerator delivers 1.3MW beam power; loss: ~10⁻⁴; average reliability is 90%; 25-50 trips per day; grid-to-beam power conversion efficiency is 32% considering RF systems only; ~ 15% including everything
- upgrade to 1.8MW is under work; new resonators Inj II; new 10'th harmonic buncher; completion planned for 2013
- cyclotron concept presents an effective option to generate high power beams, for example for ADS applications [e.g. 1GeV/10MW]

see also ...

- MOPE065: D.Reggiani et al, Transverse Phase-space Beam Tomography at PSI and SNS Proton Accelerators
- THPEC088: Y.Lee et al, Simulation based Optimization of a Collimator System for the Beam Current Upgrade at the PSI Proton Accelerator Facilities
- MOPE063: P.-A. Duperrex et al, New On-line Gain Drift Compensation for Resonant Current Monitor under Heavy Heat Load
- MOPEC072: Y. Lee et al, Simulation based Analysis of the Correlation between the Thermo-mechanical and the High Frequency Electromagnetic Characteristics of a Current Monitor at the PSI Proton Accelerator Facilities

Thank you for your attention !