IPAC10, Kyoto, Japan, May 23-28, 2010

Lanzhou Cooler Storage Ring Commissioning

Jiawen Xia, Youjin Yuan (Speaker) CSR Group

Institute of Modern Physics (IMP), Chinese Academy of Science (CAS)

Lanzhou, China

History of CSR

Heavy-ion Cooler Storage Ring & Synchrotron in Lanzhou

- 1993 Original idea
- 1996Proposal
- 1998 Approved
- 2000-2005 Construction
- 2006-2007 *Commissioning*2008-2010 Operating & Experiments

Pre-accelerator system of CSR

CSRm Tunnel

CSRe Tunnel

A NA BA BA

A

Radioactive Ion Beam Line **RIBLL2** between CSRm and CSRe

Double Separator

I DOLLA

$\Delta P/P = \pm 1\%$, Emittance = 25π mm-mrad

RIBLL2 Tunnel

B

40

HIRFL-CSR Commissioning

2006---2007

Stripping Injection Scheme

First stored beam signal from spectrum analyzer in CSRm

Bumping orbit , RF modulation (1.3Kv), Spe. Ana. in zero-span modeStripping injection23Cy2 =7A21D4 =0.5A

5 times of RF in 10s

7MeV/u→1GeV/u (C⁶⁺) Ramping

 $H = 2 \rightarrow 1$, $f_{rf} = 0.45 \rightarrow 1.63 MHz$, G = 11.3 Tm

Longitudinal position in cooling sole noid Z / cm

First e-cooling effect in CSRm

C⁶⁺-7MeV/u, observed the longitudinal schottky signal from spectrum analyzer

C⁶⁺-600MeV/u Ramping in CSRm 07/09/29 06:25

SFC-¹²C⁴⁺-7MeV/u, I_{inj.}= 11uA, STI, 1800uA in 10s, 10000uA on top, 7 ×10⁹

Scheme of the MMI for Ar-beam in CSRm

Bump section for CSRm Multi-turn injection

MMI for Ar-beam in CSRm with e-cooling

SSC-Ar-22MeV/u, I_{inj.}~ 2uA, DCCT~180uA, Period=2min., Gain~90

MMI + Ramping in CSRm

07/12/10 00:08

07/06/25 07:20

Storage-beam for CSRe 1st Commissioning

¹²C⁶⁺-600MeV/u

07/10/06 07:40

Multi-time Injection for CSRe 1st Commissioning

¹²C⁶⁺-600MeV/u

07/10/23 12:18

Ar-beam in CSRm and CSRe

³⁶Ar¹⁸⁺-368MeV/u, Mode = **Isochronous**

E-cooling in CSRe

C⁶⁺-400MeV/u , 1000uA, longitudinal schottky signal from spectrum analyzer

April, 2009

HIRFL-CSR Operation & Experiments

2008----2010

HIRFLIGSR Control Room

.....

Experiments for RIBs spectroscopy

Results of the RIBs mass-measurements (2008-2009)

For the 9 drop-line nuclei with the life-time of 100ms

Mass Resolution Δ M/M: 3 \times 10⁻⁶ ~1 \times 10⁻⁷

Experiments-2

Radioactive Electron Capture (REC) experiment for atomic physics

Xe⁵⁴⁺-beam ,197MeV/u, crossed with the N₂-jet at internal target of CSRe

SFC-CSRm Cancer therapy with c-beam

2008----2010

Slow extraction of 1/3 Resonance in CSRm

Slow extraction for ¹²C⁶⁺-200MeV/u in CSRm

DCCT beam signal in CSRm

AIC beam signal at therapy terminal

Uniform Scanning for Cancer Therapy

Raster Scanning for Cancer Therapy

Varying-energy slow extraction for cancer therapy

Beam energy of each cycle can be changed

Bragg peaks in water with 5 energy spills

Cancer Therapy with CSRm (2008-2010)

Two batches: 8 patients

Summarize for CSR Beam Status

Ion : ${}^{12}C^{6+}$, ${}^{36}Ar^{18+}$, ${}^{78}Kr^{28+}$, ${}^{129}Xe^{27+}$ **Energy:** 1GeV/u for C & Ar in CSRm **Intensity:** 10mA (7×10⁹) for C-600MeV/u in CSRm 1.2mA (4×10⁸) for Ar-368MeV/u in CSRm 0.8mA (2×10⁸) for Kr-480MeV/u in CSRm 0.5mA (1×10⁸) for Xe-235MeV/u in CSRm 15mA (8×10^{9}) for C-660MeV/u in CSRe

Experiment: RIBs mass-measurement, isochronous mode of CSRe, ΔM/M~10⁻⁶ **Slow-extraction:** For external-target experiments and cancer therapy

