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Neutrino Physics CANe

0 Neutrinos have mass
0 Mass and flavor eigenstates different
0 Mixing matrix angles 64, 0»3, 013
00,3 possibly zero, 6,3 near 45°
0 CP-violating phase ¢ (irrelevant if 613 zero)
0 Squared mass differences
0 |AmE,| < |Am3,]
0Sign of Am3; unknown
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Long Baseline Neutrino *}(’(
Experiments @TE’

0 Accelerator: make neutrinos Iin flavor eigenstate
0 Mixture of mass eigenstates
0 Neutrinos propagate to far detector

0 Each mass eigenstate has different phase
advance

0 Phase advance: square of mass
0 Detector: detect flavor eigenstate
0 Detect corresponding lepton (e, u)
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Neutrino Factory Goals @n’([

X

0 Create high-energy muon beam

0 Decay In ring, directed through earth to far
detector

0 Well-defined spectrum from muon decay

0~ creates v, and 7,
0 Distinguish by sign of detected leptons
0 Need magnetized detector
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Neutrino Factory Accelerator */’[
Complex @TE’

0 High-power proton driver, protons hit

0 Target, producing pions decaying to muons
0 Front end, reshapes and intensifies beam
0 Acceleration, increase energy to 25 GeV

0 Decay ring, neutrinos produced decay toward
far detectors
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Neutrino Factory Accelerator

Complex
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International Design Study @ﬂ-’

0 Goal: reference design report by end 2012
0 Basis for request to start project

0 Costs at 30%
0 Interim design re

evel

port by end 2010

0 Move from design to engineering

0 Designs for all

systems

0 Cost estimates at 50% level
0 Focus on baseline: one design!
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| T/
Baseline Parameters Cry o

S

025 GeV muon beam, both signs
0 Detectors at two distances

13000-5000 km
17000-8000 km

15 x 10°Y muon decays per year per baseline
0 Muon beam divergence of 0.1/
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High-Power Proton Driver ﬂ/{

S

0 Supply protons to target to produce pions
0 Basic specifications:

04 MW proton beam power

0 Proton kinetic energy 5-15 GeV

0RMS bunch length 1-3 ns

050 Hz repetition rate

0 Three bunches, extracted up to 80 us apart
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Muon Capture vs. *}(’
Proton Energy CAdNe
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Muon Capture vs.
Proton Bunch Length
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Proton Bunch Structure
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Proton Driver Plans Yt o
0 Will be upgrade to existing facility
0 Important to understand contribution to cost of

neutrino factory
0 Individual laboratories will contribute

[]

Plan to upgrade to neutrino factory

requirements

0 Corresponding cost estimate
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Targ

et Je

0 Baseline is liquid mercury jet
0 Avoid target damage
0 Target in 20 T field: pion capture
0 Demonstrated in MERIT experiment

0 Proton beam pulses comparable to neutrino
factory

0 Two bunches In rapid succession: no loss In

production for second with spacing 350 us or
ess
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Mercury Jet Target Station Z&l
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Target Plans @ﬂ-’

0 Engineering of target station and components
0 Jet nozzle: improve jet quality

0 Ensure sufficient shielding of superconducting
magnets

0 Fluid dynamics/engineering of Hg pool

0 Acts as beam dump
0 Return Hg to loop
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Mercury Pool Dynamics
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Front End A

0 Pions (thus muons) start with large energy
spread: reduce

0“Neuffer” phase rotation

0 Uses high-frequency RF
0 Does both signs

10 Create 200 MHz bunch train
0 Reduce transverse beam size
0 lonization cooling
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Pion Spectrum @Tcl
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Phase Rotation
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RF Iin Magnetic Field @ﬂ-’

0 RF cavities in magnetic field
0 Large angular and energy acceptances
0 Experiments: gradient reduced in magnetic field
0 Don’t have complete picture yet
0 Ongoing experiments
0 Change magnetic field orientation w.r.t.
surface
0 Gas-filled RF cavities
0 Test different surface materials
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Gradient vs. Magnetic Field
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Mitigation Strategies @n’([

S

1 Reduce fields on cavities

0 Increase distance to magnets
0 Add bucking coils
0 Add shielding to solenoids

0 Magnetically insulated lattice: high-E field
surfaces parallel to B

0 Make cavity from beryllium
0 Fill cavities with pressurized hydrogen gas
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Front End Plan AN

0 Mitigation often reduces performance
0 Operation limits of cavities still unknown
0 Baseline: choose technically optimal design

0 Earlier “Study ll1a” lattice
0 Improved Neuffer phase rotation

0 One alternative to understand penalty/cost of
mitigation
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Acceleration CAING

0 Eff

iciency. maximize passes through RF

0 Four stages to get good efficiency

[]

Linac to 0.9 GeV

[]

[]

0 Us

wo RLAs: to 3.6 GeV and 12.6 GeV (4.5
passes)

FFAG to 25 GeV (11 passes)
e 200 MHz SCRF
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0 Fag,

Acceleration o
0.9-3.6 GeV Linac to
RLA O 9 GeV

C 3.6-12.6 GeV RLA

12.6-25 GeV FFAG
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Acceleration N /’
. TN
L I n aC an d R LAS @‘/on CO\\‘\QQ}

0 Lattices completely defined
0 More detailed magnet designs
0 Tracking beginning with soft ends
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Acceleration T'C\/l
FFAG

0 Many passes (11): no switchyard
0 Injection/extraction challenging

115 cm radius, 0.09 T field, 7 needed, 546 m
ring circumference

0 Selected triplet lattice with long drifts

0 Longer drifts ease injection/extraction
0 Double cavity In long drift: better gradient

0 Reduce longitudinal distortion: large
transverse amplitude
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Acceleration Y
74
FFAG 2-.-

S

0 Add some chromaticity correction

0 Modest amount: hurts dynamic aperture
0 Helps longitudinal distortion

0 Design kicker systems (magnet, power supply)
0 Study lattice dynamics in EMMA experiment
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Decay Ring @T"-’

0 Long straights to maximize decays to detector

0 High beta functions in straight: reduce
divergence

0 Less divergence, less flux uncertainty for
given divergence uncertainty

0 Excellent dynamic aperture
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Decay Ring

Dynamic Aperture
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Decay Ring M
Diagnostics @n’([

0 Reduce flux spectrum uncertainty
0 Polarimeter: measure decay electron spectrum

0 Neutrino flux depends on polarization

0 Detector transverse to beam, in matching
section following weak bend

0 In-beam He gas Cerenkov: beam divergence
0 Emittance growth: verify if acceptable
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Low-Energy Neutrino Factory CANe

0 Same as above but stopping acceleration

earlier, different decay ring

0 Competitive with high energy (and best

superbeams) If 6,5 large
0 Interesting as part of staging

0 Start with low energy

0 Upgrade to high energy or
depending on physics resu
0 Will be described in design re
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Conclusions AN

0 Neutrino factory: precision measurements of
neutrino mixing

0 Well-defined scenario, lattices almost complete
0 Continuing important R&D

0 RF cavities in magnetic fields
0 MICE cooling experiment
0 EMMA: FFAG dynamics

0 Starting engineering of components
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